Skip to content

[Bug]: illegal memory access when there are multiple concurrent request #23814

@seabnavin19

Description

@seabnavin19

Your current environment

The output of python collect_env.py
==============================
        System Info
==============================
OS                           : Ubuntu 22.04.5 LTS (x86_64)
GCC version                  : (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version                : Could not collect
CMake version                : version 4.1.0
Libc version                 : glibc-2.35

==============================
       PyTorch Info
==============================
PyTorch version              : 2.7.1+cu128
Is debug build               : False
CUDA used to build PyTorch   : 12.8
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.12.11 (main, Jun  4 2025, 08:56:18) [GCC 11.4.0] (64-bit runtime)
Python platform              : Linux-4.18.0-553.56.1.el8_10.x86_64-x86_64-with-glibc2.35

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : 12.8.93
CUDA_MODULE_LOADING set to   : LAZY
GPU models and configuration :
GPU 0: NVIDIA A16
GPU 1: NVIDIA A16
GPU 2: NVIDIA A16
GPU 3: NVIDIA A16
GPU 4: NVIDIA A16
GPU 5: NVIDIA A16
GPU 6: NVIDIA A16
GPU 7: NVIDIA A16
GPU 8: NVIDIA A16
GPU 9: NVIDIA A16
GPU 10: NVIDIA A16
GPU 11: NVIDIA A16
GPU 12: NVIDIA A16
GPU 13: NVIDIA A16
GPU 14: NVIDIA A16
GPU 15: NVIDIA A16

Nvidia driver version        : 575.57.08
cuDNN version                : Could not collect
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        45 bits physical, 48 bits virtual
Byte Order:                           Little Endian
CPU(s):                               32
On-line CPU(s) list:                  0-31
Vendor ID:                            GenuineIntel
Model name:                           Intel(R) Xeon(R) Gold 6442Y
CPU family:                           6
Model:                                79
Thread(s) per core:                   1
Core(s) per socket:                   1
Socket(s):                            32
Stepping:                             0
BogoMIPS:                             5199.99
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon nopl xtopology tsc_reliable nonstop_tsc cpuid pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 avx2 smep bmi2 invpcid rdseed adx smap xsaveopt arat md_clear flush_l1d arch_capabilities
Hypervisor vendor:                    VMware
Virtualization type:                  full
L1d cache:                            1.5 MiB (32 instances)
L1i cache:                            1 MiB (32 instances)
L2 cache:                             64 MiB (32 instances)
L3 cache:                             1.9 GiB (32 instances)
NUMA node(s):                         1
NUMA node0 CPU(s):                    0-31
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          KVM: Mitigation: VMX unsupported
Vulnerability L1tf:                   Mitigation; PTE Inversion
Vulnerability Mds:                    Mitigation; Clear CPU buffers; SMT Host state unknown
Vulnerability Meltdown:               Mitigation; PTI
Vulnerability Mmio stale data:        Mitigation; Clear CPU buffers; SMT Host state unknown
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Not affected
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Retpoline
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

==============================
Versions of relevant libraries
==============================
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.8.3.14
[pip3] nvidia-cuda-cupti-cu12==12.8.57
[pip3] nvidia-cuda-nvrtc-cu12==12.8.61
[pip3] nvidia-cuda-runtime-cu12==12.8.57
[pip3] nvidia-cudnn-cu12==9.7.1.26
[pip3] nvidia-cufft-cu12==11.3.3.41
[pip3] nvidia-cufile-cu12==1.13.0.11
[pip3] nvidia-curand-cu12==10.3.9.55
[pip3] nvidia-cusolver-cu12==11.7.2.55
[pip3] nvidia-cusparse-cu12==12.5.7.53
[pip3] nvidia-cusparselt-cu12==0.6.3
[pip3] nvidia-nccl-cu12==2.26.2
[pip3] nvidia-nvjitlink-cu12==12.8.61
[pip3] nvidia-nvtx-cu12==12.8.55
[pip3] pyzmq==27.0.1
[pip3] torch==2.7.1+cu128
[pip3] torchaudio==2.7.1+cu128
[pip3] torchvision==0.22.1+cu128
[pip3] transformers==4.55.2
[pip3] triton==3.3.1
[conda] Could not collect

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
Neuron SDK Version           : N/A
vLLM Version                 : 0.10.1.1
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
        GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    GPU8    GPU9    GPU10   GPU11   GPU12   GPU13   GPU14   GPU15   CPU Affinity    NUMA Affinity        GPU NUMA ID
GPU0     X      PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     0-31    0           N/A
GPU1    PHB      X      PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     0-31    0           N/A
GPU2    PHB     PHB      X      PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     0-31    0           N/A
GPU3    PHB     PHB     PHB      X      PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     0-31    0           N/A
GPU4    PHB     PHB     PHB     PHB      X      PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     0-31    0           N/A
GPU5    PHB     PHB     PHB     PHB     PHB      X      PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     0-31    0           N/A
GPU6    PHB     PHB     PHB     PHB     PHB     PHB      X      PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     0-31    0           N/A
GPU7    PHB     PHB     PHB     PHB     PHB     PHB     PHB      X      PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     0-31    0           N/A
GPU8    PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB      X      PHB     PHB     PHB     PHB     PHB     PHB     PHB     0-31    0           N/A
GPU9    PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB      X      PHB     PHB     PHB     PHB     PHB     PHB     0-31    0           N/A
GPU10   PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB      X      PHB     PHB     PHB     PHB     PHB     0-31    0           N/A
GPU11   PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB      X      PHB     PHB     PHB     PHB     0-31    0           N/A
GPU12   PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB      X      PHB     PHB     PHB     0-31    0           N/A
GPU13   PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB      X      PHB     PHB     0-31    0           N/A
GPU14   PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB      X      PHB     0-31    0           N/A
GPU15   PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB     PHB      X      0-31    0           N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

==============================
     Environment Variables
==============================
NVIDIA_VISIBLE_DEVICES=all
NVIDIA_REQUIRE_CUDA=cuda>=12.8 brand=unknown,driver>=470,driver<471 brand=grid,driver>=470,driver<471 brand=tesla,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=vapps,driver>=470,driver<471 brand=vpc,driver>=470,driver<471 brand=vcs,driver>=470,driver<471 brand=vws,driver>=470,driver<471 brand=cloudgaming,driver>=470,driver<471 brand=unknown,driver>=535,driver<536 brand=grid,driver>=535,driver<536 brand=tesla,driver>=535,driver<536 brand=nvidia,driver>=535,driver<536 brand=quadro,driver>=535,driver<536 brand=quadrortx,driver>=535,driver<536 brand=nvidiartx,driver>=535,driver<536 brand=vapps,driver>=535,driver<536 brand=vpc,driver>=535,driver<536 brand=vcs,driver>=535,driver<536 brand=vws,driver>=535,driver<536 brand=cloudgaming,driver>=535,driver<536 brand=unknown,driver>=550,driver<551 brand=grid,driver>=550,driver<551 brand=tesla,driver>=550,driver<551 brand=nvidia,driver>=550,driver<551 brand=quadro,driver>=550,driver<551 brand=quadrortx,driver>=550,driver<551 brand=nvidiartx,driver>=550,driver<551 brand=vapps,driver>=550,driver<551 brand=vpc,driver>=550,driver<551 brand=vcs,driver>=550,driver<551 brand=vws,driver>=550,driver<551 brand=cloudgaming,driver>=550,driver<551 brand=unknown,driver>=560,driver<561 brand=grid,driver>=560,driver<561 brand=tesla,driver>=560,driver<561 brand=nvidia,driver>=560,driver<561 brand=quadro,driver>=560,driver<561 brand=quadrortx,driver>=560,driver<561 brand=nvidiartx,driver>=560,driver<561 brand=vapps,driver>=560,driver<561 brand=vpc,driver>=560,driver<561 brand=vcs,driver>=560,driver<561 brand=vws,driver>=560,driver<561 brand=cloudgaming,driver>=560,driver<561 brand=unknown,driver>=565,driver<566 brand=grid,driver>=565,driver<566 brand=tesla,driver>=565,driver<566 brand=nvidia,driver>=565,driver<566 brand=quadro,driver>=565,driver<566 brand=quadrortx,driver>=565,driver<566 brand=nvidiartx,driver>=565,driver<566 brand=vapps,driver>=565,driver<566 brand=vpc,driver>=565,driver<566 brand=vcs,driver>=565,driver<566 brand=vws,driver>=565,driver<566 brand=cloudgaming,driver>=565,driver<566
NCCL_VERSION=2.25.1-1
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NVIDIA_PRODUCT_NAME=CUDA
VLLM_USAGE_SOURCE=production-docker-image
CUDA_VERSION=12.8.1
CUDA_LAUNCH_BLOCKING=1
LD_LIBRARY_PATH=/usr/local/cuda/lib64
VLLM_LOGGING_LEVEL=ERROR
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

I have deploy the vLLM with Qwen3 model in docker with below files

Dockerfile

FROM vllm/vllm-openai:latest
COPY . .
RUN pip install -r requirements.txt

docker-compose.yaml

services:
  vllm-openai:
   # image: vllm/vllm-openai:v0.9.2
    build: .
    ports:
      - "8000:8000"
    deploy:
      resources:
        reservations:
          devices:
            - capabilities: [gpu]
    command: >
      --model Qwen/Qwen3-30B-A3B-Instruct-2507
      --host 0.0.0.0
      --port 8000
      --swap-space 2
      --tensor-parallel-size 8
      --pipeline-parallel-size 2
      --gpu-memory-utilization 0.85
      --enable-auto-tool-choice
      --tool-call-parser xlam
      --middleware middlewares.tracing.phoenix_middleware

    environment:
      - HUGGING_FACE_HUB_TOKEN= ${HUGGING_FACE_HUB_TOKEN}
      - VLLM_LOGGING_LEVEL=ERROR
      - PHOENIX_API_KEY=${PHOENIX_API_KEY}
      - CUDA_LAUNCH_BLOCKING=1
    runtime: nvidia
    volumes:
      - ~/.cache/huggingface:/root/.cache/huggingface
      - ./middlewares:/vllm-workspace/middlewares
    gpus: all
    ipc: host
    shm_size: 64g

The deployment was functioning correctly under normal conditions, but in production, when handling multiple concurrent requests from different applications, it consistently triggers an illegal memory access error. The exact cause is unclear, but it appears to be related to a memory leak or improper memory management of GPU.

{"log":"  what():  [PG ID 2 PG GUID 5 Rank 0] Process group watchdog thread terminated with exception: CUDA error: an illegal memory access was encountered\n","stream":"stderr","time":"2025-08-28T08:07:28.399792365Z"}
{"log":"Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n","stream":"stderr","time":"2025-08-28T08:07:28.399800066Z"}
{"log":"\n","stream":"stderr","time":"2025-08-28T08:07:28.39980311Z"}
{"log":"Exception raised from c10_cuda_check_implementation at /pytorch/c10/cuda/CUDAException.cpp:43 (most recent call first):\n","stream":"stderr","time":"2025-08-28T08:07:28.39980593Z"}
{"log":"frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string\u003cchar, std::char_traits\u003cchar\u003e, std::allocator\u003cchar\u003e \u003e) + 0x98 (0x7f9d934005e8 in /usr/local/lib/python3.12/dist-packages/torch/lib/libc10.so)\n","stream":"stderr","time":"2025-08-28T08:07:28.399808921Z"}
{"log":"frame #1: c10::detail::torchCheckFail(char const*, char const*, unsigned int, std::__cxx11::basic_string\u003cchar, std::char_traits\u003cchar\u003e, std::allocator\u003cchar\u003e \u003e const\u0026) + 0xe0 (0x7f9d933954a2 in /usr/local/lib/python3.12/dist-packages/torch/lib/libc10.so)\n","stream":"stderr","time":"2025-08-28T08:07:28.399812696Z"}
{"log":"frame #2: c10::cuda::c10_cuda_check_implementation(int, char const*, char const*, int, bool) + 0x3c2 (0x7f9dfe5a5422 in /usr/local/lib/python3.12/dist-packages/torch/lib/libc10_cuda.so)\n","stream":"stderr","time":"2025-08-28T08:07:28.399816073Z"}
{"log":"frame #3: c10d::ProcessGroupNCCL::WorkNCCL::finishedGPUExecutionInternal() const + 0x56 (0x7f9d9416d5a6 in /usr/local/lib/python3.12/dist-packages/torch/lib/libtorch_cuda.so)\n","stream":"stderr","time":"2025-08-28T08:07:28.399819069Z"}
{"log":"frame #4: c10d::ProcessGroupNCCL::WorkNCCL::isCompleted() + 0x70 (0x7f9d9417d840 in /usr/local/lib/python3.12/dist-packages/torch/lib/libtorch_cuda.so)\n","stream":"stderr","time":"2025-08-28T08:07:28.399822131Z"}
{"log":"frame #5: c10d::ProcessGroupNCCL::watchdogHandler() + 0x782 (0x7f9d9417f3d2 in /usr/local/lib/python3.12/dist-packages/torch/lib/libtorch_cuda.so)\n","stream":"stderr","time":"2025-08-28T08:07:28.399825035Z"}
{"log":"frame #6: c10d::ProcessGroupNCCL::ncclCommWatchdog() + 0x14d (0x7f9d94180fdd in /usr/local/lib/python3.12/dist-packages/torch/lib/libtorch_cuda.so)\n","stream":"stderr","time":"2025-08-28T08:07:28.399828061Z"}
{"log":"frame #7: \u003cunknown function\u003e + 0xdc253 (0x7f9d843b3253 in /usr/lib/x86_64-linux-gnu/libstdc++.so.6)\n","stream":"stderr","time":"2025-08-28T08:07:28.399830975Z"}
{"log":"frame #8: \u003cunknown function\u003e + 0x94ac3 (0x7f9dff1bbac3 in /usr/lib/x86_64-linux-gnu/libc.so.6)\n","stream":"stderr","time":"2025-08-28T08:07:28.399834018Z"}
{"log":"frame #9: clone + 0x44 (0x7f9dff24ca04 in /usr/lib/x86_64-linux-gnu/libc.so.6)\n","stream":"stderr","time":"2025-08-28T08:07:28.39984039Z"}
{"log":"\n","stream":"stderr","time":"2025-08-28T08:07:28.399843375Z"}
{"log":"Exception raised from ncclCommWatchdog at /pytorch/torch/csrc/distributed/c10d/ProcessGroupNCCL.cpp:1905 (most recent call first):\n","stream":"stderr","time":"2025-08-28T08:07:28.399846241Z"}
{"log":"frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string\u003cchar, std::char_traits\u003cchar\u003e, std::allocator\u003cchar\u003e \u003e) + 0x98 (0x7f9d934005e8 in /usr/local/lib/python3.12/dist-packages/torch/lib/libc10.so)\n","stream":"stderr","time":"2025-08-28T08:07:28.399849501Z"}
{"log":"frame #1: \u003cunknown function\u003e + 0xcc7b9e (0x7f9d9414fb9e in /usr/local/lib/python3.12/dist-packages/torch/lib/libtorch_cuda.so)\n","stream":"stderr","time":"2025-08-28T08:07:28.399852764Z"}
{"log":"frame #2: \u003cunknown function\u003e + 0x9165ed (0x7f9d93d9e5ed in /usr/local/lib/python3.12/dist-packages/torch/lib/libtorch_cuda.so)\n","stream":"stderr","time":"2025-08-28T08:07:28.399855693Z"}
{"log":"frame #3: \u003cunknown function\u003e + 0xdc253 (0x7f9d843b3253 in /usr/lib/x86_64-linux-gnu/libstdc++.so.6)\n","stream":"stderr","time":"2025-08-28T08:07:28.399861995Z"}
{"log":"frame #4: \u003cunknown function\u003e + 0x94ac3 (0x7f9dff1bbac3 in /usr/lib/x86_64-linux-gnu/libc.so.6)\n","stream":"stderr","time":"2025-08-28T08:07:28.399865058Z"}
{"log":"frame #5: clone + 0x44 (0x7f9dff24ca04 in /usr/lib/x86_64-linux-gnu/libc.so.6)\n","stream":"stderr","time":"2025-08-28T08:07:28.399868161Z"}
{"log":"\n","stream":"stderr","time":"2025-08-28T08:07:28.39987103Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597] WorkerProc hit an exception.\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153349288Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597] Traceback (most recent call last):\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153398453Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]   File \"/usr/local/lib/python3.12/dist-packages/vllm/v1/executor/multiproc_executor.py\", line 592, in worker_busy_loop\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153407068Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]     output = func(*args, **kwargs)\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153412434Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]              ^^^^^^^^^^^^^^^^^^^^^\r\n","stream":"stdout","time":"2025-08-28T08:07:33.15341686Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]   File \"/usr/local/lib/python3.12/dist-packages/torch/utils/_contextlib.py\", line 116, in decorate_context\r\n","stream":"stdout","time":"2025-08-28T08:07:33.15342108Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]     return func(*args, **kwargs)\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153425725Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]            ^^^^^^^^^^^^^^^^^^^^^\r\n","stream":"stdout","time":"2025-08-28T08:07:33.15342972Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]   File \"/usr/local/lib/python3.12/dist-packages/vllm/v1/worker/gpu_worker.py\", line 369, in execute_model\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153433826Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]     get_pp_group().send_tensor_dict(output.tensors,\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153438212Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]   File \"/usr/local/lib/python3.12/dist-packages/vllm/distributed/parallel_state.py\", line 700, in send_tensor_dict\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153442303Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]     self.send_object(metadata_list, dst=dst)\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153455564Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]   File \"/usr/local/lib/python3.12/dist-packages/vllm/distributed/parallel_state.py\", line 530, in send_object\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153461165Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]     torch.distributed.send(size_tensor,\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153465552Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]   File \"/usr/local/lib/python3.12/dist-packages/torch/distributed/c10d_logger.py\", line 81, in wrapper\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153469772Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]     return func(*args, **kwargs)\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153474117Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]            ^^^^^^^^^^^^^^^^^^^^^\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153478112Z"}
{"log":"frame #2: \u003cunknown function\u003e + 0x9165ed (0x7f9d93d9e5ed in /usr/local/lib/python3.12/dist-packages/torch/lib/libtorch_cuda.so)\n","stream":"stderr","time":"2025-08-28T08:07:28.399855693Z"}
{"log":"frame #3: \u003cunknown function\u003e + 0xdc253 (0x7f9d843b3253 in /usr/lib/x86_64-linux-gnu/libstdc++.so.6)\n","stream":"stderr","time":"2025-08-28T08:07:28.399861995Z"}
{"log":"frame #4: \u003cunknown function\u003e + 0x94ac3 (0x7f9dff1bbac3 in /usr/lib/x86_64-linux-gnu/libc.so.6)\n","stream":"stderr","time":"2025-08-28T08:07:28.399865058Z"}
{"log":"frame #5: clone + 0x44 (0x7f9dff24ca04 in /usr/lib/x86_64-linux-gnu/libc.so.6)\n","stream":"stderr","time":"2025-08-28T08:07:28.399868161Z"}
{"log":"\n","stream":"stderr","time":"2025-08-28T08:07:28.39987103Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597] WorkerProc hit an exception.\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153349288Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597] Traceback (most recent call last):\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153398453Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]   File \"/usr/local/lib/python3.12/dist-packages/vllm/v1/executor/multiproc_executor.py\", line 592, in worker_busy_loop\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153407068Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]     output = func(*args, **kwargs)\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153412434Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]              ^^^^^^^^^^^^^^^^^^^^^\r\n","stream":"stdout","time":"2025-08-28T08:07:33.15341686Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]   File \"/usr/local/lib/python3.12/dist-packages/torch/utils/_contextlib.py\", line 116, in decorate_context\r\n","stream":"stdout","time":"2025-08-28T08:07:33.15342108Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]     return func(*args, **kwargs)\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153425725Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]            ^^^^^^^^^^^^^^^^^^^^^\r\n","stream":"stdout","time":"2025-08-28T08:07:33.15342972Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]   File \"/usr/local/lib/python3.12/dist-packages/vllm/v1/worker/gpu_worker.py\", line 369, in execute_model\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153433826Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]     get_pp_group().send_tensor_dict(output.tensors,\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153438212Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]   File \"/usr/local/lib/python3.12/dist-packages/vllm/distributed/parallel_state.py\", line 700, in send_tensor_dict\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153442303Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]     self.send_object(metadata_list, dst=dst)\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153455564Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]   File \"/usr/local/lib/python3.12/dist-packages/vllm/distributed/parallel_state.py\", line 530, in send_object\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153461165Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]     torch.distributed.send(size_tensor,\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153465552Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]   File \"/usr/local/lib/python3.12/dist-packages/torch/distributed/c10d_logger.py\", line 81, in wrapper\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153469772Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]     return func(*args, **kwargs)\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153474117Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]            ^^^^^^^^^^^^^^^^^^^^^\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153478112Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]   File \"/usr/local/lib/python3.12/dist-packages/torch/distributed/distributed_c10d.py\", line 2436, in send\r\n","stream":"stdout","time":"2025-08-28T08:07:33.15348207Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]     work.wait()\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153486357Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597] RuntimeError: [/pytorch/third_party/gloo/gloo/transport/tcp/pair.cc:534] Connection closed by peer [172.20.0.2]:25746\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153490357Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597] Traceback (most recent call last):\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153494633Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]   File \"/usr/local/lib/python3.12/dist-packages/vllm/v1/executor/multiproc_executor.py\", line 592, in worker_busy_loop\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153498652Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]     output = func(*args, **kwargs)\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153501827Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]              ^^^^^^^^^^^^^^^^^^^^^\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153504749Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]   File \"/usr/local/lib/python3.12/dist-packages/torch/utils/_contextlib.py\", line 116, in decorate_context\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153507737Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]     return func(*args, **kwargs)\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153511022Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]            ^^^^^^^^^^^^^^^^^^^^^\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153514197Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]   File \"/usr/local/lib/python3.12/dist-packages/vllm/v1/worker/gpu_worker.py\", line 369, in execute_model\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153517124Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]     get_pp_group().send_tensor_dict(output.tensors,\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153524233Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]   File \"/usr/local/lib/python3.12/dist-packages/vllm/distributed/parallel_state.py\", line 700, in send_tensor_dict\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153527318Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]     self.send_object(metadata_list, dst=dst)\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153530676Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]   File \"/usr/local/lib/python3.12/dist-packages/vllm/distributed/parallel_state.py\", line 530, in send_object\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153533589Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]     torch.distributed.send(size_tensor,\r\n","stream":"stdout","time":"2025-08-28T08:07:33.1535367Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]   File \"/usr/local/lib/python3.12/dist-packages/torch/distributed/c10d_logger.py\", line 81, in wrapper\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153539655Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]     return func(*args, **kwargs)\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153542699Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]            ^^^^^^^^^^^^^^^^^^^^^\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153545562Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]   File \"/usr/local/lib/python3.12/dist-packages/torch/distributed/distributed_c10d.py\", line 2436, in send\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153548429Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597]     work.wait()\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153551487Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597] RuntimeError: [/pytorch/third_party/gloo/gloo/transport/tcp/pair.cc:534] Connection closed by peer [172.20.0.2]:25746\r\n","stream":"stdout","time":"2025-08-28T08:07:33.153554631Z"}
{"log":"\u001b[1;36m(VllmWorker PP0_TP0 pid=212)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:597] \n","stream":"stdout","time":"2025-08-28T08:07:33.153557761Z"}
"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [multiproc_executor.py:146] Worker proc VllmWorker-8 died unexpectedly, shutting down executor.\n","stream":"stdout","time":"2025-08-28T08:07:33.195502497Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [dump_input.py:69] Dumping input data for V1 LLM engine (v0.10.1.1) with config: model='Qwen/Qwen3-30B-A3B-Instruct-2507', speculative_config=None, tokenizer='Qwen/Qwen3-30B-A3B-Instruct-2507', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, override_neuron_config={}, tokenizer_revision=None, trust_remote_code=False, dtype=torch.bfloat16, max_seq_len=262144, download_dir=None, load_format=auto, tensor_parallel_size=8, pipeline_parallel_size=2, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, device_config=cuda, decoding_config=DecodingConfig(backend='auto', disable_fallback=False, disable_any_whitespace=False, disable_additional_properties=False, reasoning_backend=''), observability_config=ObservabilityConfig(show_hidden_metrics_for_version=None, otlp_traces_endpoint=None, collect_detailed_traces=None), seed=0, served_model_name=Qwen/Qwen3-30B-A3B-Instruct-2507, enable_prefix_caching=True, chunked_prefill_enabled=True, use_async_output_proc=False, pooler_config=None, compilation_config={\"level\":3,\"debug_dump_path\":\"\",\"cache_dir\":\"\",\"backend\":\"\",\"custom_ops\":[],\"splitting_ops\":[\"vllm.unified_attention\",\"vllm.unified_attention_with_output\",\"vllm.mamba_mixer2\"],\"use_inductor\":true,\"compile_sizes\":[],\"inductor_compile_config\":{\"enable_auto_functionalized_v2\":false},\"inductor_passes\":{},\"cudagraph_mode\":1,\"use_cudagraph\":true,\"cudagraph_num_of_warmups\":1,\"cudagraph_capture_sizes\":[512,504,496,488,480,472,464,456,448,440,432,424,416,408,400,392,384,376,368,360,352,344,336,328,320,312,304,296,288,280,272,264,256,248,240,232,224,216,208,200,192,184,176,168,160,152,144,136,128,120,112,104,96,88,80,72,64,56,48,40,32,24,16,8,4,2,1],\"cudagraph_copy_inputs\":false,\"full_cuda_graph\":false,\"pass_config\":{},\"max_capture_size\":512,\"local_cache_dir\":null}, \n","stream":"stdout","time":"2025-08-28T08:07:33.197960071Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [dump_input.py:76] Dumping scheduler output for model execution: SchedulerOutput(scheduled_new_reqs=[NewRequestData(req_id=chatcmpl-45148ecf8f8e4f94b8fad390770ad7aa,prompt_token_ids_len=3177,mm_kwargs=[],mm_hashes=[],mm_positions=[],sampling_params=SamplingParams(n=1, presence_penalty=0.0, frequency_penalty=0.0, repetition_penalty=1.0, temperature=0.0, top_p=1.0, top_k=0, min_p=0.0, seed=None, stop=[], stop_token_ids=[151643], bad_words=[], include_stop_str_in_output=False, ignore_eos=False, max_tokens=5120, min_tokens=0, logprobs=None, prompt_logprobs=None, skip_special_tokens=True, spaces_between_special_tokens=True, truncate_prompt_tokens=None, guided_decoding=GuidedDecodingParams(json={'type': 'array', 'minItems': 1, 'items': {'type': 'object', 'anyOf': [{'properties': {'name': {'type': 'string', 'enum': ['TextToSQL']}, 'parameters': {'type': 'object', 'properties': {'question': {'type': 'string', 'description': 'Analytical question in natural language'}, 'user_id': {'type': 'string', 'description': 'User identifier for session tracking'}}, 'required': ['question', 'user_id']}}, 'required': ['name', 'parameters']}]}}, regex=None, choice=None, grammar=None, json_object=None, backend='xgrammar', backend_was_auto=True, disable_fallback=False, disable_any_whitespace=False, disable_additional_properties=False, whitespace_pattern=None, structural_tag=None), extra_args=None),block_ids=([1419, 1420, 1421, 1422, 1423, 1424, 1425, 1426, 1427, 1428, 1429, 1430, 1431, 1432, 1433, 1434, 1435, 1436, 1437, 1438, 1439, 1440, 1441, 1442, 1443, 1444, 1445, 1446, 1447, 1448, 1449, 1450, 1451, 1452, 1453, 1454, 1455, 1456, 1457, 1458, 1459, 1460, 1461, 1462, 1463, 1464, 1465, 1466, 1467, 1468, 1469, 1470, 1471, 1472, 1473, 1474, 1475, 1476, 1477, 1478, 1479, 1480, 1481, 1482, 1483, 1484, 1485, 1486, 1487, 1488, 1489, 1490, 1491, 1492, 1493, 1494, 1495, 1496, 1497, 1498, 1499, 1500, 1501, 1502, 1503, 1504, 1505, 1506, 1507, 1508, 1509, 1510, 1511, 1512, 1513, 1514, 1515, 1516, 1517, 1518, 1519, 1520, 1521, 1522, 1523, 1524, 1525, 1526, 1527, 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1535, 1536, 1537, 1538, 1539, 1540, 1541, 1542, 1543, 1544, 1545, 1546],),num_computed_tokens=0,lora_request=None)], scheduled_cached_reqs=CachedRequestData(req_ids=['chatcmpl-d49596783d3e44ec81d57dc61333f306'], resumed_from_preemption=[false], new_token_ids=[[374]], new_block_ids=[[[]]], num_computed_tokens=[5124]), num_scheduled_tokens={chatcmpl-45148ecf8f8e4f94b8fad390770ad7aa: 2047, chatcmpl-d49596783d3e44ec81d57dc61333f306: 1}, total_num_scheduled_tokens=2048, scheduled_spec_decode_tokens={}, scheduled_encoder_inputs={}, num_common_prefix_blocks=[0], finished_req_ids=[], free_encoder_input_ids=[], structured_output_request_ids={chatcmpl-d49596783d3e44ec81d57dc61333f306: 0, chatcmpl-45148ecf8f8e4f94b8fad390770ad7aa: 1}, grammar_bitmask=array([[       0, 67108864,        0, ...,        0,        0,        0],\r\n","stream":"stdout","time":"2025-08-28T08:07:33.198629732Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [dump_input.py:76]        [       0, 67108864,        0, ...,        0,        0,        0]],\r\n","stream":"stdout","time":"2025-08-28T08:07:33.198672289Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [dump_input.py:76]       shape=(2, 4748), dtype=int32), kv_connector_metadata=null)\n","stream":"stdout","time":"2025-08-28T08:07:33.198676001Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [dump_input.py:79] Dumping scheduler stats: SchedulerStats(num_running_reqs=2, num_waiting_reqs=0, step_counter=0, current_wave=0, kv_cache_usage=0.01181941923774954, prefix_cache_stats=PrefixCacheStats(reset=False, requests=1, queries=3177, hits=0), spec_decoding_stats=None, num_corrupted_reqs=0)\n","stream":"stdout","time":"2025-08-28T08:07:33.199082171Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702] EngineCore encountered a fatal error.\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207579063Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702] Traceback (most recent call last):\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207601244Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]   File \"/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core.py\", line 693, in run_engine_core\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207605253Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]     engine_core.run_busy_loop()\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207608864Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]   File \"/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core.py\", line 720, in run_busy_loop\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207611238Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]     self._process_engine_step()\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207613809Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]   File \"/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core.py\", line 745, in _process_engine_step\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207616181Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]     outputs, model_executed = self.step_fn()\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207618735Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]                               ^^^^^^^^^^^^^^\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207621145Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]   File \"/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core.py\", line 339, in step_with_batch_queue\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207623438Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]     model_output = self.execute_model_with_error_logging(\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207626171Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]                    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207628581Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]   File \"/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core.py\", line 274, in execute_model_with_error_logging\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207630921Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]     raise err\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207633374Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]   File \"/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core.py\", line 265, in execute_model_with_error_logging\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207641757Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]     return model_fn(scheduler_output)\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207644357Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]            ^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207646938Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]   File \"/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core.py\", line 340, in \u003clambda\u003e\r\n","stream":"stdout","time":"2025-08-28T08:07:33.20764922Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]     lambda _: future.result(), scheduler_output)\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207652153Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]               ^^^^^^^^^^^^^^^\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207654969Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]   File \"/usr/lib/python3.12/concurrent/futures/_base.py\", line 456, in result\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207657246Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]     return self.__get_result()\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207659676Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]            ^^^^^^^^^^^^^^^^^^^\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207661899Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]   File \"/usr/lib/python3.12/concurrent/futures/_base.py\", line 401, in __get_result\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207664122Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]     raise self._exception\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207666489Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]   File \"/usr/lib/python3.12/concurrent/futures/thread.py\", line 59, in run\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207668726Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]     result = self.fn(*self.args, **self.kwargs)\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207671509Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207673792Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]   File \"/usr/local/lib/python3.12/dist-packages/vllm/v1/executor/multiproc_executor.py\", line 226, in get_response\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207676028Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]     status, result = w.worker_response_mq.dequeue(\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207678516Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207680974Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]   File \"/usr/local/lib/python3.12/dist-packages/vllm/distributed/device_communicators/shm_broadcast.py\", line 511, in dequeue\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207683466Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]     with self.acquire_read(timeout, cancel) as buf:\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207685953Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207693099Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]   File \"/usr/lib/python3.12/contextlib.py\", line 137, in __enter__\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207695488Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]     return next(self.gen)\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207697875Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]            ^^^^^^^^^^^^^^\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207700132Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]   File \"/usr/local/lib/python3.12/dist-packages/vllm/distributed/device_communicators/shm_broadcast.py\", line 468, in acquire_read\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207702451Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702]     raise RuntimeError(\"cancelled\")\r\n","stream":"stdout","time":"2025-08-28T08:07:33.207705099Z"}
{"log":"\u001b[1;36m(EngineCore_0 pid=142)\u001b[0;0m ERROR 08-28 01:07:33 [core.py:702] RuntimeError: cancelled\n","stream":"stdout","time":"2025-08-28T08:07:33.207707429Z"}
{"log":"\u001b[1;36m(APIServer pid=1)\u001b[0;0m ERROR 08-28 01:07:33 [async_llm.py:430] AsyncLLM output_handler failed.\r\n","stream":"stdout","time":"2025-08-28T08:07:33.213294943Z"}
{"log":"\u001b[1;36m(APIServer pid=1)\u001b[0;0m ERROR 08-28 01:07:33 [async_llm.py:430] Traceback (most recent call last):\r\n","stream":"stdout","time":"2025-08-28T08:07:33.213338072Z"}
{"log":"\u001b[1;36m(APIServer pid=1)\u001b[0;0m ERROR 08-28 01:07:33 [async_llm.py:430]   File \"/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/async_llm.py\", line 389, in output_handler\r\n","stream":"stdout","time":"2025-08-28T08:07:33.2133437Z"}
{"log":"\u001b[1;36m(APIServer pid=1)\u001b[0;0m ERROR 08-28 01:07:33 [async_llm.py:430]     outputs = await engine_core.get_output_async()\r\n","stream":"stdout","time":"2025-08-28T08:07:33.213347866Z"}
{"log":"\u001b[1;36m(APIServer pid=1)\u001b[0;0m ERROR 08-28 01:07:33 [async_llm.py:430]               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\n","stream":"stdout","time":"2025-08-28T08:07:33.213350996Z"}
{"log":"\u001b[1;36m(APIServer pid=1)\u001b[0;0m ERROR 08-28 01:07:33 [async_llm.py:430]   File \"/usr/local/lib/python3.12/dist-packages/vllm/v1/engine/core_client.py\", line 843, in get_output_async\r\n","stream":"stdout","time":"2025-08-28T08:07:33.213353892Z"}
{"log":"\u001b[1;36m(APIServer pid=1)\u001b[0;0m ERROR 08-28 01:07:33 [async_llm.py:430]     raise self._format_exception(outputs) from None\r\n","stream":"stdout","time":"2025-08-28T08:07:33.213357146Z"}
{"log":"\u001b[1;36m(APIServer pid=1)\u001b[0;0m ERROR 08-28 01:07:33 [async_llm.py:430] vllm.v1.engine.exceptions.EngineDeadError: EngineCore encountered an issue. See stack trace (above) for the root cause.\n","stream":"stdout","time":"2025-08-28T08:07:33.213360092Z"}
{"log":"\u001b[1;36m(APIServer pid=1)\u001b[0;0m INFO:     10.4.4.78:37160 - \"POST /v1/chat/completions HTTP/1.1\" 500 Internal Server Error\n","stream":"stdout","time":"2025-08-28T08:07:33.219084807Z"}
{"log":"\u001b[1;36m(APIServer pid=1)\u001b[0;0m INFO:     10.4.4.78:37166 - \"POST /v1/chat/completions HTTP/1.1\" 500 Internal Server Error\n","stream":"stdout","time":"2025-08-28T08:07:33.224559296Z"}
{"log":"\u001b[1;36m(APIServer pid=1)\u001b[0;0m INFO:     Shutting down\n","stream":"stderr","time":"2025-08-28T08:07:33.289775473Z"}
{"log":"\u001b[1;36m(APIServer pid=1)\u001b[0;0m INFO:     Waiting for application shutdown.\n","stream":"stderr","time":"2025-08-28T08:07:33.390138122Z"}
{"log":"\u001b[1;36m(APIServer pid=1)\u001b[0;0m INFO:     Application shutdown complete.\n","stream":"stderr","time":"2025-08-28T08:07:33.390361019Z"}
{"log":"\u001b[1;36m(APIServer pid=1)\u001b[0;0m INFO:     Finished server process [1]\n","stream":"stderr","time":"2025-08-28T08:07:33.390383871Z"}
{"log":"nanobind: leaked 6 instances!\n","stream":"stderr","time":"2025-08-28T08:07:34.356967992Z"}
{"log":" - leaked instance 0x7f76a28bb378 of type \"xgrammar.xgrammar_bindings.GrammarMatcher\"\n","stream":"stderr","time":"2025-08-28T08:07:34.357072259Z"}
{"log":" - leaked instance 0x7f76a28bb318 of type \"xgrammar.xgrammar_bindings.GrammarMatcher\"\n","stream":"stderr","time":"2025-08-28T08:07:34.35708971Z"}
{"log":" - leaked instance 0x7f76a2924858 of type \"xgrammar.xgrammar_bindings.CompiledGrammar\"\n","stream":"stderr","time":"2025-08-28T08:07:34.357100354Z"}
{"log":" - leaked instance 0x7f76a278a688 of type \"xgrammar.xgrammar_bindings.GrammarMatcher\"\n","stream":"stderr","time":"2025-08-28T08:07:34.357110649Z"}
{"log":" - leaked instance 0x7f76a2926ef8 of type \"xgrammar.xgrammar_bindings.CompiledGrammar\"\n","stream":"stderr","time":"2025-08-28T08:07:34.357122026Z"}
{"log":" - leaked instance 0x7f76a28bb138 of type \"xgrammar.xgrammar_bindings.CompiledGrammar\"\n","stream":"stderr","time":"2025-08-28T08:07:34.357131278Z"}
{"log":"nanobind: leaked 2 types!\n","stream":"stderr","time":"2025-08-28T08:07:34.357140353Z"}
{"log":" - leaked type \"xgrammar.xgrammar_bindings.GrammarMatcher\"\n","stream":"stderr","time":"2025-08-28T08:07:34.35714905Z"}
{"log":" - leaked type \"xgrammar.xgrammar_bindings.CompiledGrammar\"\n","stream":"stderr","time":"2025-08-28T08:07:34.357158352Z"}
{"log":"nanobind: leaked 16 functions!\n","stream":"stderr","time":"2025-08-28T08:07:34.35716745Z"}
{"log":" - leaked function \"__init__\"\n","stream":"stderr","time":"2025-08-28T08:07:34.35717613Z"}
{"log":" - leaked function \"\"\n","stream":"stderr","time":"2025-08-28T08:07:34.357185193Z"}
{"log":" - leaked function \"fill_next_token_bitmask\"\n","stream":"stderr","time":"2025-08-28T08:07:34.357194417Z"}
{"log":" - leaked function \"serialize_json\"\n","stream":"stderr","time":"2025-08-28T08:07:34.357203997Z"}
{"log":" - leaked function \"find_jump_forward_string\"\n","stream":"stderr","time":"2025-08-28T08:07:34.357213148Z"}
{"log":" - leaked function \"rollback\"\n","stream":"stderr","time":"2025-08-28T08:07:34.357222212Z"}
{"log":" - leaked function \"\"\n","stream":"stderr","time":"2025-08-28T08:07:34.357231007Z"}
{"log":" - leaked function \"\"\n","stream":"stderr","time":"2025-08-28T08:07:34.357239564Z"}
{"log":" - leaked function \"reset\"\n","stream":"stderr","time":"2025-08-28T08:07:34.357248372Z"}
{"log":" - leaked function \"\"\n","stream":"stderr","time":"2025-08-28T08:07:34.357286136Z"}
{"log":" - leaked function \"\"\n","stream":"stderr","time":"2025-08-28T08:07:34.357295331Z"}
{"log":" - leaked function \"_debug_print_internal_state\"\n","stream":"stderr","time":"2025-08-28T08:07:34.357303891Z"}
{"log":" - leaked function \"deserialize_json\"\n","stream":"stderr","time":"2025-08-28T08:07:34.357312888Z"}
{"log":" - leaked function \"accept_token\"\n","stream":"stderr","time":"2025-08-28T08:07:34.357321735Z"}
{"log":" - leaked function \"accept_string\"\n","stream":"stderr","time":"2025-08-28T08:07:34.357330475Z"}
{"log":" - leaked function \"is_terminated\"\n","stream":"stderr","time":"2025-08-28T08:07:34.357339207Z"}
{"log":"nanobind: this is likely caused by a reference counting issue in the binding code.\n","stream":"stderr","time":"2025-08-28T08:07:34.357348023Z"}
{"log":"[rank9]:[W828 01:07:36.293269650 TCPStore.cpp:125] [c10d] recvValue failed on SocketImpl(fd=170, addr=[localhost]:52084, remote=[localhost]:58815): failed to recv, got 0 bytes\n","stream":"stderr","time":"2025-08-28T08:07:36.019040067Z"}
{"log":"Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):\n","stream":"stderr","time":"2025-08-28T08:07:36.01908949Z"}
{"log":"frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string\u003cchar, std::char_traits\u003cchar\u003e, std::allocator\u003cchar\u003e \u003e) + 0x98 (0x7fb914d785e8 in /usr/local/lib/python3.12/dist-packages/torch/lib/libc10.so)\n","stream":"stderr","time":"2025-08-28T08:07:36.019094393Z"}
{"log":"frame #1: \u003cunknown function\u003e + 0x5ba8bfe (0x7fb8f92dcbfe in /usr/local/lib/python3.12/dist-packages/torch/lib/libtorch_cpu.so)\n","stream":"stderr","time":"2025-08-28T08:07:36.019104829Z"}
{"log":"frame #2: \u003cunknown function\u003e + 0x5baaf40 (0x7fb8f92def40 in /usr/local/lib/python3.12/dist-packages/torch/lib/libtorch_cpu.so)\n","stream":"stderr","time":"2025-08-28T08:07:36.01910802Z"}
{"log":"frame #3: \u003cunknown function\u003e + 0x5bab84a (0x7fb8f92df84a in /usr/local/lib/python3.12/dist-packages/torch/lib/libtorch_cpu.so)\n","stream":"stderr","time":"2025-08-28T08:07:36.019111256Z"}
{"log":"frame #4: c10d::TCPStore::check(std::vector\u003cstd::__cxx11::basic_string\u003cchar, std::char_traits\u003cchar\u003e, std::allocator\u003cchar\u003e \u003e, std::allocator\u003cstd::__cxx11::basic_string\u003cchar, std::char_traits\u003cchar\u003e, std::allocator\u003cchar\u003e \u003e \u003e \u003e const\u0026) + 0x2a9 (0x7fb8f92d92a9 in /usr/local/lib/python3.12/dist-packages/torch/lib/libtorch_cpu.so)\n","stream":"stderr","time":"2025-08-28T08:07:36.019114737Z"}
{"log":"frame #5: c10d::ProcessGroupNCCL::heartbeatMonitor() + 0x379 (0x7fb8aa97bad9 in /usr/local/lib/python3.12/dist-packages/torch/lib/libtorch_cuda.so)\n","stream":"stderr","time":"2025-08-28T08:07:36.019118858Z"}
{"log":"frame #6: \u003cunknown function\u003e + 0xdc253 (0x7fb89adb3253 in /usr/lib/x86_64-linux-gnu/libstdc++.so.6)\n","stream":"stderr","time":"2025-08-28T08:07:36.019122101Z"}
{"log":"frame #7: \u003cunknown function\u003e + 0x94ac3 (0x7fb915a59ac3 in /usr/lib/x86_64-linux-gnu/libc.so.6)\n","stream":"stderr","time":"2025-08-28T08:07:36.019124995Z"}
{"log":"frame #8: clone + 0x44 (0x7fb915aeaa04 in /usr/lib/x86_64-linux-gnu/libc.so.6)\n","stream":"stderr","time":"2025-08-28T08:07:36.019127894Z"}
{"log":"\n","stream":"stderr","time":"2025-08-28T08:07:36.019130676Z"}
{"log":"[rank9]:[W828 01:07:36.310492869 ProcessGroupNCCL.cpp:1662] [PG ID 0 PG GUID 0 Rank 9] Failed to check the \"should dump\" flag on TCPStore, (maybe TCPStore server has shut down too early), with error: failed to recv, got 0 bytes\n","stream":"stderr","time":"2025-08-28T08:07:36.019133431Z"}

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions