-
-
Notifications
You must be signed in to change notification settings - Fork 11.1k
Closed
Labels
Description
Your current environment
The output of python collect_env.py
Collecting environment information...
==============================
System Info
==============================
OS : Ubuntu 22.04.5 LTS (x86_64)
GCC version : (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version : 19.0.0git (https://github.com/RadeonOpenCompute/llvm-project roc-6.4.1 25184 c87081df219c42dc27c5b6d86c0525bc7d01f727)
CMake version : version 3.31.6
Libc version : glibc-2.35
==============================
PyTorch Info
==============================
PyTorch version : 2.7.0+gitf717b2a
Is debug build : False
CUDA used to build PyTorch : N/A
ROCM used to build PyTorch : 6.4.43483-a187df25c
==============================
Python Environment
==============================
Python version : 3.12.11 (main, Jun 4 2025, 08:56:18) [GCC 11.4.0] (64-bit runtime)
Python platform : Linux-4.18.0-2.4.3.3.kwai.x86_64-x86_64-with-glibc2.35
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : Could not collect
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration : AMD Instinct MI210 (gfx90a:sramecc+:xnack-)
Nvidia driver version : Could not collect
cuDNN version : Could not collect
HIP runtime version : 6.4.43483
MIOpen runtime version : 3.4.0
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 57 bits virtual
Byte Order: Little Endian
CPU(s): 128
On-line CPU(s) list: 0-127
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Platinum 8352Y CPU @ 2.20GHz
CPU family: 6
Model: 106
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 2
Stepping: 6
CPU max MHz: 3400.0000
CPU min MHz: 800.0000
BogoMIPS: 4400.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 invpcid_single ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid md_clear pconfig flush_l1d arch_capabilities
Virtualization: VT-x
L1d cache: 3 MiB (64 instances)
L1i cache: 2 MiB (64 instances)
L2 cache: 80 MiB (64 instances)
L3 cache: 96 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-31,64-95
NUMA node1 CPU(s): 32-63,96-127
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Spec store bypass: Vulnerable
Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers
Vulnerability Spectre v2: Vulnerable, IBPB: disabled, STIBP: disabled
Vulnerability Tsx async abort: Not affected
==============================
Versions of relevant libraries
==============================
[pip3] conch-triton-kernels==1.2.1
[pip3] numpy==2.2.6
[pip3] pyzmq==27.1.0
[pip3] sentence-transformers==3.4.1
[pip3] torch==2.7.0+gitf717b2a
[pip3] torchvision==0.21.0+7af6987
[pip3] transformers==4.57.0.dev0
[pip3] triton==3.3.0
[conda] Could not collect
==============================
vLLM Info
==============================
ROCM Version : 6.4.43483-a187df25c
vLLM Version : 0.10.2rc3.dev72+g05916b3c6 (git sha: 05916b3c6)
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
============================ ROCm System Management Interface ============================
================================ Weight between two GPUs =================================
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7
GPU0 0 15 15 15 60 60 60 60
GPU1 15 0 15 15 60 60 60 60
GPU2 15 15 0 15 60 60 60 60
GPU3 15 15 15 0 60 60 60 60
GPU4 60 60 60 60 0 15 15 15
GPU5 60 60 60 60 15 0 15 15
GPU6 60 60 60 60 15 15 0 15
GPU7 60 60 60 60 15 15 15 0
================================= Hops between two GPUs ==================================
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7
GPU0 0 1 1 1 3 3 3 3
GPU1 1 0 1 1 3 3 3 3
GPU2 1 1 0 1 3 3 3 3
GPU3 1 1 1 0 3 3 3 3
GPU4 3 3 3 3 0 1 1 1
GPU5 3 3 3 3 1 0 1 1
GPU6 3 3 3 3 1 1 0 1
GPU7 3 3 3 3 1 1 1 0
=============================== Link Type between two GPUs ===============================
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7
GPU0 0 XGMI XGMI XGMI PCIE PCIE PCIE PCIE
GPU1 XGMI 0 XGMI XGMI PCIE PCIE PCIE PCIE
GPU2 XGMI XGMI 0 XGMI PCIE PCIE PCIE PCIE
GPU3 XGMI XGMI XGMI 0 PCIE PCIE PCIE PCIE
GPU4 PCIE PCIE PCIE PCIE 0 XGMI XGMI XGMI
GPU5 PCIE PCIE PCIE PCIE XGMI 0 XGMI XGMI
GPU6 PCIE PCIE PCIE PCIE XGMI XGMI 0 XGMI
GPU7 PCIE PCIE PCIE PCIE XGMI XGMI XGMI 0
======================================= Numa Nodes =======================================
GPU[0] : (Topology) Numa Node: 0
GPU[0] : (Topology) Numa Affinity: 0
GPU[1] : (Topology) Numa Node: 0
GPU[1] : (Topology) Numa Affinity: 0
GPU[2] : (Topology) Numa Node: 0
GPU[2] : (Topology) Numa Affinity: 0
GPU[3] : (Topology) Numa Node: 0
GPU[3] : (Topology) Numa Affinity: 0
GPU[4] : (Topology) Numa Node: 1
GPU[4] : (Topology) Numa Affinity: 1
GPU[5] : (Topology) Numa Node: 1
GPU[5] : (Topology) Numa Affinity: 1
GPU[6] : (Topology) Numa Node: 1
GPU[6] : (Topology) Numa Affinity: 1
GPU[7] : (Topology) Numa Node: 1
GPU[7] : (Topology) Numa Affinity: 1
================================== End of ROCm SMI Log ===================================
==============================
Environment Variables
==============================
PYTORCH_TUNABLEOP_TUNING=0
PYTORCH_TUNABLEOP_ENABLED=1
PYTORCH_ROCM_ARCH=gfx90a;gfx942
LD_LIBRARY_PATH=/opt/rocm/lib:/usr/local/lib:
PYTORCH_TUNABLEOP_FILENAME=/app/afo_tune_device_%d_full.csv
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
from vllm import LLM, SamplingParams
if __name__ == '__main__':
prompts = [
"The capital of France is",
]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(model='Qwen/Qwen3-Next-80B-A3B-Instruct',
tensor_parallel_size=4,
enforce_eager=True)
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")WorkerProc hit an exception.
Traceback (most recent call last):
File "/usr/local/lib/python3.12/dist-packages/triton/language/core.py", line 34, in wrapper
return fn(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/triton/language/core.py", line 1451, in arange
return semantic.arange(start, end, _builder)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/triton/language/semantic.py", line 627, in arange
raise ValueError("arange's range must be a power of 2")
ValueError: arange's range must be a power of 2
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/usr/local/lib/python3.12/dist-packages/vllm/v1/executor/multiproc_executor.py", line 666, in worker_busy_loop
output = func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/vllm/v1/worker/gpu_worker.py", line 436, in execute_model
output = self.model_runner.execute_model(scheduler_output,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/torch/utils/_contextlib.py", line 116, in decorate_context
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/vllm/v1/worker/gpu_model_runner.py", line 2072, in execute_model
model_output = self.model(
^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1762, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/vllm/model_executor/models/qwen3_next.py", line 1174, in forward
hidden_states = self.model(input_ids, positions, intermediate_tensors,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/vllm/compilation/decorators.py", line 223, in __call__
return self.forward(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/vllm/model_executor/models/qwen3_next.py", line 954, in forward
hidden_states, residual = layer(
^^^^^^
File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1762, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/vllm/model_executor/models/qwen3_next.py", line 844, in forward
self.self_attn(
File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1762, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/vllm/model_executor/models/qwen3_next.py", line 735, in forward
attn_output = self.attn(q, k, v)
^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/torch/nn/modules/module.py", line 1762, in _call_impl
return forward_call(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/vllm/attention/layer.py", line 289, in forward
torch.ops.vllm.unified_attention_with_output(
File "/usr/local/lib/python3.12/dist-packages/torch/_ops.py", line 1158, in __call__
return self._op(*args, **(kwargs or {}))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/vllm/attention/layer.py", line 580, in unified_attention_with_output
self.impl.forward(self,
File "/usr/local/lib/python3.12/dist-packages/vllm/v1/attention/backends/triton_attn.py", line 409, in forward
self.unified_attention(
File "/usr/local/lib/python3.12/dist-packages/vllm/attention/ops/triton_unified_attention.py", line 712, in unified_attention
kernel_unified_attention_2d[(
File "/usr/local/lib/python3.12/dist-packages/triton/runtime/jit.py", line 347, in <lambda>
return lambda *args, **kwargs: self.run(grid=grid, warmup=False, *args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/triton/runtime/jit.py", line 569, in run
kernel = self.compile(src, target=target, options=options.__dict__)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/triton/compiler/compiler.py", line 278, in compile
module = src.make_ir(options, codegen_fns, module_map, context)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/triton/compiler/compiler.py", line 81, in make_ir
return ast_to_ttir(self.fn, self, context=context, options=options, codegen_fns=codegen_fns,
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
triton.compiler.errors.CompilationError: at 139:17:
# calculate the number of tiles (blocks) that need to be processed to
# cover the longest sequence prefix (due to causal masking, blocks beyond
# this prefix can be skipped)
num_blocks = cdiv_fn(max_seq_prefix_len, BLOCK_SIZE)
# iterate through tiles
for j in range(0, num_blocks):
physical_block_idx = tl.load(block_tables_ptr + block_table_offset + j)
offs_n = tl.arange(0, BLOCK_SIZE)
Before the exception, I print some message and find that
q shape: torch.Size([5, 1024])
k shape: torch.Size([5, 256])
v shape: torch.Size([5, 256])
and
range : 272
I thing this cause the exception.
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.