Skip to content

[Bug][ROCm]: large max_num_seqs hurts performance on AMDย #25718

@draftbk

Description

@draftbk

Your current environment

The output of python collect_env.py
Collecting environment information...
==============================
        System Info
==============================
OS                           : CentOS Stream 9 (x86_64)
GCC version                  : (GCC) 11.5.0 20240719 (Red Hat 11.5.0-11)
Clang version                : Could not collect
CMake version                : version 3.31.6
Libc version                 : glibc-2.34

==============================
       PyTorch Info
==============================
PyTorch version              : 2.10.0.dev20250916+rocm6.4
Is debug build               : False
CUDA used to build PyTorch   : N/A
ROCM used to build PyTorch   : 6.4.43484-123eb5128

==============================
      Python Environment
==============================
Python version               : 3.12.11 (main, Aug 14 2025, 00:00:00) [GCC 11.5.0 20240719 (Red Hat 11.5.0-11)] (64-bit runtime)
Python platform              : Linux-6.4.3-0_fbk20_zion_2830_g3e5ab162667d-x86_64-with-glibc2.34

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : Could not collect
CUDA_MODULE_LOADING set to   : 
GPU models and configuration : AMD Instinct MI300X (gfx942:sramecc+:xnack-)
Nvidia driver version        : Could not collect
cuDNN version                : Could not collect
HIP runtime version          : 6.4.43484
MIOpen runtime version       : 3.4.0
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      52 bits physical, 57 bits virtual
Byte Order:                         Little Endian
CPU(s):                             384
On-line CPU(s) list:                0-383
Vendor ID:                          AuthenticAMD
Model name:                         AMD EPYC 9654 96-Core Processor
CPU family:                         25
Model:                              17
Thread(s) per core:                 2
Core(s) per socket:                 96
Socket(s):                          2
Stepping:                           1
Frequency boost:                    enabled
CPU(s) scaling MHz:                 86%
CPU max MHz:                        3707.8120
CPU min MHz:                        1500.0000
BogoMIPS:                           4792.43
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif x2avic v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid overflow_recov succor smca fsrm flush_l1d
Virtualization:                     AMD-V
L1d cache:                          6 MiB (192 instances)
L1i cache:                          6 MiB (192 instances)
L2 cache:                           192 MiB (192 instances)
L3 cache:                           768 MiB (24 instances)
NUMA node(s):                       2
NUMA node0 CPU(s):                  0-95,192-287
NUMA node1 CPU(s):                  96-191,288-383
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Vulnerable: eIBRS with unprivileged eBPF
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected

==============================
Versions of relevant libraries
==============================
[pip3] conch-triton-kernels==1.2.1
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.8.4.1
[pip3] nvidia-cuda-cupti-cu12==12.8.90
[pip3] nvidia-cuda-nvrtc-cu12==12.8.93
[pip3] nvidia-cuda-runtime-cu12==12.8.90
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cufft-cu12==11.3.3.83
[pip3] nvidia-cufile-cu12==1.13.1.3
[pip3] nvidia-curand-cu12==10.3.9.90
[pip3] nvidia-cusolver-cu12==11.7.3.90
[pip3] nvidia-cusparse-cu12==12.5.8.93
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-nccl-cu12==2.27.3
[pip3] nvidia-nvjitlink-cu12==12.8.93
[pip3] nvidia-nvtx-cu12==12.8.90
[pip3] pytorch-triton-rocm==3.5.0+git5ae38bdb
[pip3] pyzmq==27.0.2
[pip3] torch==2.10.0.dev20250916+rocm6.4
[pip3] torchao==0.14.0.dev20250917+rocm6.4
[pip3] torchaudio==2.8.0.dev20250917+rocm6.4
[pip3] torchvision==0.25.0.dev20250917+rocm6.4
[pip3] transformers==4.55.4
[pip3] triton==3.3.0
[conda] Could not collect

==============================
         vLLM Info
==============================
ROCM Version                 : 6.4.43484-123eb5128
vLLM Version                 : 0.10.1rc2.dev544+g81c53ef55.d20250925 (git sha: 81c53ef55, date: 20250925)
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
  ============================ ROCm System Management Interface ============================
================================ Weight between two GPUs =================================
       GPU0         GPU1         GPU2         GPU3         GPU4         GPU5         GPU6         GPU7         
GPU0   0            15           15           15           15           15           15           15           
GPU1   15           0            15           15           15           15           15           15           
GPU2   15           15           0            15           15           15           15           15           
GPU3   15           15           15           0            15           15           15           15           
GPU4   15           15           15           15           0            15           15           15           
GPU5   15           15           15           15           15           0            15           15           
GPU6   15           15           15           15           15           15           0            15           
GPU7   15           15           15           15           15           15           15           0            

================================= Hops between two GPUs ==================================
       GPU0         GPU1         GPU2         GPU3         GPU4         GPU5         GPU6         GPU7         
GPU0   0            1            1            1            1            1            1            1            
GPU1   1            0            1            1            1            1            1            1            
GPU2   1            1            0            1            1            1            1            1            
GPU3   1            1            1            0            1            1            1            1            
GPU4   1            1            1            1            0            1            1            1            
GPU5   1            1            1            1            1            0            1            1            
GPU6   1            1            1            1            1            1            0            1            
GPU7   1            1            1            1            1            1            1            0            

=============================== Link Type between two GPUs ===============================
       GPU0         GPU1         GPU2         GPU3         GPU4         GPU5         GPU6         GPU7         
GPU0   0            XGMI         XGMI         XGMI         XGMI         XGMI         XGMI         XGMI         
GPU1   XGMI         0            XGMI         XGMI         XGMI         XGMI         XGMI         XGMI         
GPU2   XGMI         XGMI         0            XGMI         XGMI         XGMI         XGMI         XGMI         
GPU3   XGMI         XGMI         XGMI         0            XGMI         XGMI         XGMI         XGMI         
GPU4   XGMI         XGMI         XGMI         XGMI         0            XGMI         XGMI         XGMI         
GPU5   XGMI         XGMI         XGMI         XGMI         XGMI         0            XGMI         XGMI         
GPU6   XGMI         XGMI         XGMI         XGMI         XGMI         XGMI         0            XGMI         
GPU7   XGMI         XGMI         XGMI         XGMI         XGMI         XGMI         XGMI         0            

======================================= Numa Nodes =======================================
GPU[0]          : (Topology) Numa Node: 0
GPU[0]          : (Topology) Numa Affinity: 0
GPU[1]          : (Topology) Numa Node: 0
GPU[1]          : (Topology) Numa Affinity: 0
GPU[2]          : (Topology) Numa Node: 0
GPU[2]          : (Topology) Numa Affinity: 0
GPU[3]          : (Topology) Numa Node: 0
GPU[3]          : (Topology) Numa Affinity: 0
GPU[4]          : (Topology) Numa Node: 1
GPU[4]          : (Topology) Numa Affinity: 1
GPU[5]          : (Topology) Numa Node: 1
GPU[5]          : (Topology) Numa Affinity: 1
GPU[6]          : (Topology) Numa Node: 1
GPU[6]          : (Topology) Numa Affinity: 1
GPU[7]          : (Topology) Numa Node: 1
GPU[7]          : (Topology) Numa Affinity: 1
================================== End of ROCm SMI Log ===================================

==============================
     Environment Variables
==============================
CUDA_CACHE_PATH=/data/users/lifans/.nv/ComputeCache
CUDA_NVCC_EXECUTABLE=/home/lifans/local/ccache/cuda/nvcc
LD_LIBRARY_PATH=/usr/local/cuda-12.4/lib64/:/usr/local/cuda-12.4/lib64/:
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1

๐Ÿ› Describe the bug

Large max_num_seqs hurts performance on MI300X due to excessive cudagraphs.

Mean ITL (ms):

  • ITL with real batch size 1 increased from 12.05 ms to 17.35ms when max-num-seqs is changed from 32 to 128

Extra Findings:

  • H100 does not have this regression
  • Limiting the max cuda_graph_sizes when MBS = 128 can mitigate the issue. (Manually change self.cuda_graph_sizes from [min(self.max_num_seqs * 2, 512)] to [min(64, 512)])

Test 1:

# start the server with --max-num-seqs=32
MODEL=meta-llama/Llama-3.3-70B-Instruct
HF_HUB_DISABLE_XET=1 VLLM_USE_V1=1 with-proxy python -m vllm.entrypoints.openai.api_server --model $MODEL --disable-log-requests -tp 8 --port 8001 --no-enable-prefix-caching --max-model-len=8192 --max-num-seqs=32 --gpu_memory_utilization=0.8

# perf command
MODEL=meta-llama/Llama-3.3-70B-Instruct
python -m vllm.entrypoints.cli.main bench serve --model $MODEL --tokenizer $MODEL --port 8001  --dataset-name random  --ignore-eos  --num-prompts 20  --request-rate inf  --random-input-len 2048  --random-output-len 100  --max-concurrency 1

# result
---------------Inter-token Latency----------------
Mean ITL (ms):                           12.05     
Median ITL (ms):                         11.94     
P99 ITL (ms):                            14.53     
==================================================

Test 2:

#  start the server with --max-num-seqs=128 
MODEL=meta-llama/Llama-3.3-70B-Instruct
HF_HUB_DISABLE_XET=1 VLLM_USE_V1=1 with-proxy python -m vllm.entrypoints.openai.api_server --model $MODEL --disable-log-requests -tp 8 --port 8001 --no-enable-prefix-caching --max-model-len=8192 --max-num-seqs=128 --gpu_memory_utilization=0.8

# perf command
MODEL=meta-llama/Llama-3.3-70B-Instruct
python -m vllm.entrypoints.cli.main bench serve --model $MODEL --tokenizer $MODEL --port 8001  --dataset-name random  --ignore-eos  --num-prompts 20  --request-rate inf  --random-input-len 2048  --random-output-len 100  --max-concurrency 1

# result
---------------Inter-token Latency----------------
Mean ITL (ms):                           17.35     
Median ITL (ms):                         12.03     
P99 ITL (ms):                            20.82     
==================================================

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't workingrocmRelated to AMD ROCm

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions