Skip to content

[Bug]: llama 4 family is incompatible with CUDA graph FULL_AND_PIECEWISE mode #25960

@cjackal

Description

@cjackal

Your current environment

The output of python collect_env.py
==============================
        System Info
==============================
OS                           : Ubuntu 24.04.3 LTS (x86_64)
GCC version                  : (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
Clang version                : Could not collect
CMake version                : Could not collect
Libc version                 : glibc-2.39

==============================
       PyTorch Info
==============================
PyTorch version              : 2.8.0+cu129
Is debug build               : False
CUDA used to build PyTorch   : 12.9
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.12.3 (main, Aug 14 2025, 17:47:21) [GCC 13.3.0] (64-bit runtime)
Python platform              : Linux-5.14.0-284.118.1.el9_2.x86_64-x86_64-with-glibc2.39

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : 12.9.86
CUDA_MODULE_LOADING set to   : LAZY
GPU models and configuration :
GPU 0: NVIDIA H100 80GB HBM3
GPU 1: NVIDIA H100 80GB HBM3
GPU 2: NVIDIA H100 80GB HBM3
GPU 3: NVIDIA H100 80GB HBM3
GPU 4: NVIDIA H100 80GB HBM3
GPU 5: NVIDIA H100 80GB HBM3
GPU 6: NVIDIA H100 80GB HBM3
GPU 7: NVIDIA H100 80GB HBM3

Nvidia driver version        : 570.148.08
cuDNN version                : Could not collect
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        52 bits physical, 57 bits virtual
Byte Order:                           Little Endian
CPU(s):                               64
On-line CPU(s) list:                  0-63
Vendor ID:                            GenuineIntel
Model name:                           Intel(R) Xeon(R) Gold 6430
CPU family:                           6
Model:                                143
Thread(s) per core:                   1
Core(s) per socket:                   32
Socket(s):                            2
Stepping:                             8
CPU(s) scaling MHz:                   76%
CPU max MHz:                          3400.0000
CPU min MHz:                          800.0000
BogoMIPS:                             4200.00
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 ds_cpl smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr ibt amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities
L1d cache:                            3 MiB (64 instances)
L1i cache:                            2 MiB (64 instances)
L2 cache:                             128 MiB (64 instances)
L3 cache:                             120 MiB (2 instances)
NUMA node(s):                         8
NUMA node0 CPU(s):                    0-7
NUMA node1 CPU(s):                    8-15
NUMA node2 CPU(s):                    16-23
NUMA node3 CPU(s):                    24-31
NUMA node4 CPU(s):                    32-39
NUMA node5 CPU(s):                    40-47
NUMA node6 CPU(s):                    48-55
NUMA node7 CPU(s):                    56-63
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Not affected
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Enhanced IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

==============================
Versions of relevant libraries
==============================
[pip3] flashinfer-python==0.3.1
[pip3] mypy-extensions==1.0.0
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.9.1.4
[pip3] nvidia-cuda-cupti-cu12==12.9.79
[pip3] nvidia-cuda-nvrtc-cu12==12.9.86
[pip3] nvidia-cuda-runtime-cu12==12.9.79
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cufft-cu12==11.4.1.4
[pip3] nvidia-cufile-cu12==1.14.1.1
[pip3] nvidia-curand-cu12==10.3.10.19
[pip3] nvidia-cusolver-cu12==11.7.5.82
[pip3] nvidia-cusparse-cu12==12.5.10.65
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-ml-py==13.580.82
[pip3] nvidia-nccl-cu12==2.27.3
[pip3] nvidia-nvjitlink-cu12==12.9.86
[pip3] nvidia-nvshmem-cu12==3.3.24
[pip3] nvidia-nvtx-cu12==12.9.79
[pip3] pyzmq==27.1.0
[pip3] torch==2.8.0+cu129
[pip3] torchaudio==2.8.0+cu129
[pip3] torchvision==0.23.0+cu129
[pip3] transformers==4.56.2
[pip3] triton==3.4.0
[conda] Could not collect

==============================
         vLLM Info
==============================
ROCM Version : Could not collect
vLLM Version : 0.11.0rc2.dev73+gfa7e254a7 (git sha: fa7e254a7)
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
        GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    NIC0    NIC1    NIC2    NIC3    NIC4    CPU Affinity    NUMA Affinity    GPU NUMA ID
GPU0     X      NV18    NV18    NV18    NV18    NV18    NV18    NV18    PIX     SYS     SYS     SYS     SYS     0-7     0    N/A
GPU1    NV18     X      NV18    NV18    NV18    NV18    NV18    NV18    PXB     SYS     SYS     SYS     SYS     0-7     0    N/A
GPU2    NV18    NV18     X      NV18    NV18    NV18    NV18    NV18    SYS     PXB     NODE    SYS     SYS     16-23   2    N/A
GPU3    NV18    NV18    NV18     X      NV18    NV18    NV18    NV18    SYS     PIX     NODE    SYS     SYS     16-23   2    N/A
GPU4    NV18    NV18    NV18    NV18     X      NV18    NV18    NV18    SYS     SYS     SYS     PXB     SYS     32-39   4    N/A
GPU5    NV18    NV18    NV18    NV18    NV18     X      NV18    NV18    SYS     SYS     SYS     PIX     SYS     32-39   4    N/A
GPU6    NV18    NV18    NV18    NV18    NV18    NV18     X      NV18    SYS     SYS     SYS     SYS     PXB     48-55   6    N/A
GPU7    NV18    NV18    NV18    NV18    NV18    NV18    NV18     X      SYS     SYS     SYS     SYS     PIX     48-55   6    N/A
NIC0    PIX     PXB     SYS     SYS     SYS     SYS     SYS     SYS      X      SYS     SYS     SYS     SYS
NIC1    SYS     SYS     PXB     PIX     SYS     SYS     SYS     SYS     SYS      X      NODE    SYS     SYS
NIC2    SYS     SYS     NODE    NODE    SYS     SYS     SYS     SYS     SYS     NODE     X      SYS     SYS
NIC3    SYS     SYS     SYS     SYS     PXB     PIX     SYS     SYS     SYS     SYS     SYS      X      SYS
NIC4    SYS     SYS     SYS     SYS     SYS     SYS     PXB     PIX     SYS     SYS     SYS     SYS      X

Legend:

  X = Self
  SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX = Connection traversing at most a single PCIe bridge
  NV# = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0
  NIC1: mlx5_1
  NIC2: mlx5_2
  NIC3: mlx5_3
  NIC4: mlx5_4

==============================
     Environment Variables
==============================
NVIDIA_VISIBLE_DEVICES=/var/run/nvidia-container-devices
VLLM_USE_DEEP_GEMM=1
NVIDIA_GDRCOPY=enabled
LD_LIBRARY_PATH=/app/.venv/lib/python3.12/site-packages/nvidia/nvshmem/lib:/usr/local/cuda/lib64:/usr/lib/x86_64-linux-gnu:/usr/lib
VLLM_NO_USAGE_STATS=1
VLLM_LOGGING_LEVEL=INFO
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
TORCHINDUCTOR_CACHE_DIR=/tmp/torchinductor_root
VLLM_WORKER_MULTIPROC_METHOD=spawn
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

Phenomenon

For the current main(0.11.0rc2.dev73+gfa7e254a7), llama 4 model family suffers from gibberish outputs for long context (beyond torch.compile length, that is):

# Launch llama 4 maverick server with --max-num-batched-tokens 16K

vllm serve meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8 \
  --tensor-parallel-size 8 \
  --max-model-len 512K \
  --max-num-batched-tokens 16K \
  --max-num-seqs 16 \
  --enable-auto-tool-choice \
  --tool-call-parser pythonic \
  --mm-encoder-tp-mode data \
  --limit-mm-per-prompt {"image":5} 
import json
import uuid

from transformers import AutoTokenizer
from openai import OpenAI

tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8")

print("\n====needle-in-a-haystack test====\n")

# Test NIAH type problem with input length 8K and 32K, resp.
for context_len in [8 * 1024, 32 * 1024]:
    uuid_puzzle = {str(uuid.uuid4()): str(uuid.uuid4())}
    uuid_q, uuid_a = next(iter(uuid_puzzle.items()))
    puzzle_template = "JSON data:\n{uuid_puzzle}\nQ: \nKey: \"{uuid_q}\"\nThe value associated with the specified key is: "
    messages = [{"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": puzzle_template.format(uuid_q=uuid_q, uuid_puzzle=json.dumps(uuid_puzzle))}]
    while len(tokenizer.apply_chat_template(messages)) < context_len:
        for _ in range(8):
            uuid_puzzle[str(uuid.uuid4())] = str(uuid.uuid4())
        messages = [{"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": puzzle_template.format(uuid_q=uuid_q, uuid_puzzle=json.dumps(uuid_puzzle))}]
    print(f"{context_len=}, messages:", json.dumps(messages, indent=2, f"{uuid_q=}, {uuid_a=}", sep="\n\n")
    for t in client.chat.completions.create(model="meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8", messages=messages, stream=True):
        if t.choices:
            d = t.choices[0].delta
            print(getattr(d, "reasoning_content", "") or d.content or "", end="", flush=True)
    print("\n\n")

For input length 8K, the model answers correctly:

...
\"727302a0-f517-4305-937c-e0f1d47f9306\"\nThe value associated with the specified key is: "
  }
]

uuid_q='727302a0-f517-4305-937c-e0f1d47f9306', uuid_a='0b0693fd-72a6-4e56-ab2f-a39eba5912b8'
The value associated with the key "727302a0-f517-4305-937c-e0f1d47f9306" is "0b0693fd-72a6-4e56-ab2f-a39eba5912b8".

But for input length 32K, the model generates gibberish instead:

...
7f-4296-a474-e4be8c97be5b\"}\nQ: \nKey: \"9b28c3c0-ac2c-4b5f-aa84-4e6c4822e83e\"\nThe value associated with the specified key is: "
  }
]

uuid_q='9b28c3c0-ac2c-4b5f-aa84-4e6c4822e83e', uuid_a='e237febc-1566-4ef0-b295-1a0b7d761064'
The8b0c7d4d0b9d9f86d3e4e4d3e4b1e7d5e5e8e3e4e3a4d3e3f8e4e1e6d8f9f0e0e6c1e1f0e1e5f...

Analysis

After #25444, the default CUDA graph mode for most models has been changed from PIECEWISE to FULL_AND_PIECEWISE. This works okay for most other models, but for llama 4 family it seems not. We can recover the original model performance by setting --compilation-config {"cudagraph_mode":"PIECEWISE"}:

modified launch script

vllm serve meta-llama/Llama-4-Maverick-17B-128E-Instruct-FP8 \
  --tensor-parallel-size 8 \
  --max-model-len 512K \
  --max-num-batched-tokens 16K \
  --max-num-seqs 16 \
  --enable-auto-tool-choice \
  --tool-call-parser pythonic \
  --mm-encoder-tp-mode data \
  --limit-mm-per-prompt {"image":5} \
  --compilation-config {"cudagraph_mode":"PIECEWISE"}

result

...
  }
]

uuid_q='24c088f3-722d-422a-92e3-6ff3b755b9ff', uuid_a='99d79a2f-dec9-4aa3-ac1e-da1fb28c7006'
To find the value associated with the key "24c088f3-722d-422a-92e3-6ff3b755b9ff" in the given JSON data, we need to look at the JSON object provided.

The JSON data is:
{
  "24c088f3-722d-422a-92e3-6ff3b755b9ff": "99d79a2f-dec9-4aa3-ac1e-da1fb28c7006",
  "c524b637-e8cb-453b-a655-4e875ed5c305": "5963aaf6-5b61-468b-b601-b7d5f9b6954b",
...

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    Status

    Done

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions