Skip to content

[Bug]: dynamic_func() got multiple values for argument 'HEAD_DIM' crash during startup when using -dcp #26022

@josephrocca

Description

@josephrocca

Your current environment

The output of python collect_env.py
/root/venv/lib/python3.12/site-packages/torch/cuda/__init__.py:63: FutureWarning: The pynvml package is deprecated. Please install nvidia-ml-py instead. If you did not install pynvml directly, please report this to the maintainers of the package that installed pynvml for you.
  import pynvml  # type: ignore[import]
Collecting environment information...
uv is set
==============================
        System Info
==============================
OS                           : Ubuntu 24.04.3 LTS (x86_64)
GCC version                  : (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
Clang version                : Could not collect
CMake version                : Could not collect
Libc version                 : glibc-2.39

==============================
       PyTorch Info
==============================
PyTorch version              : 2.8.0+cu128
Is debug build               : False
CUDA used to build PyTorch   : 12.8
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.12.3 (main, Aug 14 2025, 17:47:21) [GCC 13.3.0] (64-bit runtime)
Python platform              : Linux-6.8.0-79-generic-x86_64-with-glibc2.39

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : 12.8.93
CUDA_MODULE_LOADING set to   : LAZY
GPU models and configuration : 
GPU 0: NVIDIA H200
GPU 1: NVIDIA H200
GPU 2: NVIDIA H200
GPU 3: NVIDIA H200
GPU 4: NVIDIA H200
GPU 5: NVIDIA H200
GPU 6: NVIDIA H200
GPU 7: NVIDIA H200

Nvidia driver version        : 580.82.07
cuDNN version                : Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.12.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.12.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.12.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.12.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.12.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.12.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.12.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.12.0
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Address sizes:                        52 bits physical, 57 bits virtual
Byte Order:                           Little Endian
CPU(s):                               176
On-line CPU(s) list:                  0-175
Vendor ID:                            AuthenticAMD
BIOS Vendor ID:                       QEMU
Model name:                           AMD EPYC 9654 96-Core Processor
BIOS Model name:                      pc-q35-8.2  CPU @ 2.0GHz
BIOS CPU family:                      1
CPU family:                           25
Model:                                17
Thread(s) per core:                   1
Core(s) per socket:                   1
Socket(s):                            176
Stepping:                             1
BogoMIPS:                             4799.99
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm rep_good nopl cpuid extd_apicid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy svm cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw perfctr_core ssbd ibrs ibpb stibp vmmcall fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512_bf16 clzero xsaveerptr wbnoinvd arat npt lbrv nrip_save tsc_scale vmcb_clean pausefilter pfthreshold v_vmsave_vmload vgif avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid fsrm arch_capabilities
Virtualization:                       AMD-V
Hypervisor vendor:                    KVM
Virtualization type:                  full
L1d cache:                            11 MiB (176 instances)
L1i cache:                            11 MiB (176 instances)
L2 cache:                             88 MiB (176 instances)
L3 cache:                             2.8 GiB (176 instances)
NUMA node(s):                         1
NUMA node0 CPU(s):                    0-175
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Vulnerable: Safe RET, no microcode
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected

==============================
Versions of relevant libraries
==============================
[pip3] flashinfer-python==0.3.1
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.8.4.1
[pip3] nvidia-cuda-cupti-cu12==12.8.90
[pip3] nvidia-cuda-nvrtc-cu12==12.8.93
[pip3] nvidia-cuda-runtime-cu12==12.8.90
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cudnn-frontend==1.14.1
[pip3] nvidia-cufft-cu12==11.3.3.83
[pip3] nvidia-cufile-cu12==1.13.1.3
[pip3] nvidia-curand-cu12==10.3.9.90
[pip3] nvidia-cusolver-cu12==11.7.3.90
[pip3] nvidia-cusparse-cu12==12.5.8.93
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-ml-py==13.580.82
[pip3] nvidia-nccl-cu12==2.27.3
[pip3] nvidia-nvjitlink-cu12==12.8.93
[pip3] nvidia-nvtx-cu12==12.8.90
[pip3] pynvml==13.0.1
[pip3] pyzmq==27.1.0
[pip3] torch==2.8.0+cu128
[pip3] torchaudio==2.8.0+cu128
[pip3] torchvision==0.23.0+cu128
[pip3] transformers==4.56.2
[pip3] triton==3.4.0
[conda] Could not collect

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
vLLM Version                 : 0.11.0rc2.dev110+g1405f0c7b (git sha: 1405f0c7b)
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
        GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      NV18    NV18    NV18    NV18    NV18    NV18    NV18    0-175   0               N/A
GPU1    NV18     X      NV18    NV18    NV18    NV18    NV18    NV18    0-175   0               N/A
GPU2    NV18    NV18     X      NV18    NV18    NV18    NV18    NV18    0-175   0               N/A
GPU3    NV18    NV18    NV18     X      NV18    NV18    NV18    NV18    0-175   0               N/A
GPU4    NV18    NV18    NV18    NV18     X      NV18    NV18    NV18    0-175   0               N/A
GPU5    NV18    NV18    NV18    NV18    NV18     X      NV18    NV18    0-175   0               N/A
GPU6    NV18    NV18    NV18    NV18    NV18    NV18     X      NV18    0-175   0               N/A
GPU7    NV18    NV18    NV18    NV18    NV18    NV18    NV18     X      0-175   0               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

==============================
     Environment Variables
==============================
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

vLLM crashes with dynamic_func() got multiple values for argument 'HEAD_DIM' during startup when using -dcp 4:

# ~latest commit as of writing
export VLLM_COMMIT=1405f0c7bab17b10682d2de337bd544b3e9f2f92 && uv pip install vllm[flashinfer] --torch-backend=auto --extra-index-url https://wheels.vllm.ai/${VLLM_COMMIT}
CUDA_VISIBLE_DEVICES='0,1,2,3' vllm serve RedHatAI/DeepSeek-R1-0528-quantized.w4a16 --port 3000 --tensor-parallel-size 4 -dcp 4 --served-model-name default --host 0.0.0.0

The issue does not exist in the latest stable version, 0.10.2.

Startup / crash logs:

https://gist.github.com/josephrocca/af3ae259dd63c5392245131fa58e7d7f

Note: For the log lines like Worker_TP0 .... and Worker_TP1 ...., etc. I've removed all but the TP0 lines, since they were of course duplicated 4 times.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions