Skip to content

[Bug]: Encountered AssertionError and precision issues when enabling MTP in deepseek v3.1 #26621

@WangQiangItachi

Description

@WangQiangItachi

Your current environment

The output of python collect_env.py
Collecting environment information...
==============================
        System Info
==============================
OS                           : Ubuntu 22.04.5 LTS (x86_64)
GCC version                  : (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version                : Could not collect
CMake version                : version 4.1.0
Libc version                 : glibc-2.35

==============================
       PyTorch Info
==============================
PyTorch version              : 2.8.0+cu128
Is debug build               : False
CUDA used to build PyTorch   : 12.8
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.12.11 (main, Jun  4 2025, 08:56:18) [GCC 11.4.0] (64-bit runtime)
Python platform              : Linux-5.4.119-19.0009.56-x86_64-with-glibc2.35

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : 12.8.93
CUDA_MODULE_LOADING set to   : LAZY
GPU models and configuration : 
GPU 0: NVIDIA H20
GPU 1: NVIDIA H20
GPU 2: NVIDIA H20
GPU 3: NVIDIA H20
GPU 4: NVIDIA H20
GPU 5: NVIDIA H20
GPU 6: NVIDIA H20
GPU 7: NVIDIA H20

Nvidia driver version        : 570.158.01
cuDNN version                : Could not collect
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Address sizes:                   52 bits physical, 57 bits virtual
Byte Order:                      Little Endian
CPU(s):                          384
On-line CPU(s) list:             0-383
Vendor ID:                       AuthenticAMD
BIOS Vendor ID:                  Advanced Micro Devices, Inc.
Model name:                      AMD EPYC 9K84 96-Core Processor
BIOS Model name:                 AMD EPYC 9K84 96-Core Processor                
CPU family:                      25
Model:                           17
Thread(s) per core:              2
Core(s) per socket:              96
Socket(s):                       2
Stepping:                        1
Frequency boost:                 enabled
CPU max MHz:                     2600.0000
CPU min MHz:                     1500.0000
BogoMIPS:                        5200.95
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local avx512_bf16 clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq la57 rdpid overflow_recov succor smca fsrm flush_l1d
Virtualization:                  AMD-V
L1d cache:                       6 MiB (192 instances)
L1i cache:                       6 MiB (192 instances)
L2 cache:                        192 MiB (192 instances)
L3 cache:                        768 MiB (24 instances)
NUMA node(s):                    2
NUMA node0 CPU(s):               0-95,192-287
NUMA node1 CPU(s):               96-191,288-383
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Not affected
Vulnerability Mds:               Not affected
Vulnerability Meltdown:          Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:        Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:        Mitigation; Full AMD retpoline, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Not affected

==============================
Versions of relevant libraries
==============================
[pip3] flashinfer-python==0.4.0
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.8.4.1
[pip3] nvidia-cuda-cupti-cu12==12.8.90
[pip3] nvidia-cuda-nvrtc-cu12==12.8.93
[pip3] nvidia-cuda-runtime-cu12==12.8.90
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cudnn-frontend==1.14.1
[pip3] nvidia-cufft-cu12==11.3.3.83
[pip3] nvidia-cufile-cu12==1.13.1.3
[pip3] nvidia-curand-cu12==10.3.9.90
[pip3] nvidia-cusolver-cu12==11.7.3.90
[pip3] nvidia-cusparse-cu12==12.5.8.93
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-cutlass-dsl==4.2.1
[pip3] nvidia-ml-py==12.575.51
[pip3] nvidia-nccl-cu12==2.27.3
[pip3] nvidia-nvjitlink-cu12==12.8.93
[pip3] nvidia-nvshmem-cu12==3.4.5
[pip3] nvidia-nvtx-cu12==12.8.90
[pip3] pynvml==12.0.0
[pip3] pyzmq==27.1.0
[pip3] torch==2.8.0+cu128
[pip3] torchaudio==2.8.0+cu128
[pip3] torchvision==0.23.0+cu128
[pip3] transformers==4.57.0
[pip3] triton==3.4.0
[conda] Could not collect

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
vLLM Version                 : 0.11.0rc2.dev403+g5bc26c438 (git sha: 5bc26c438)
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
        GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    NIC0    NIC1    NIC2    NIC3    NIC4    NIC5    NIC6    NIC7    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      NV18    NV18    NV18    NV18    NV18    NV18    NV18    PIX     NODE    NODE    NODE    SYS     SYS     SYS     SYS     0-95,192-287    0               N/A
GPU1    NV18     X      NV18    NV18    NV18    NV18    NV18    NV18    NODE    PIX     PHB     NODE    SYS     SYS     SYS     SYS     0-95,192-287    0               N/A
GPU2    NV18    NV18     X      NV18    NV18    NV18    NV18    NV18    NODE    PHB     PIX     NODE    SYS     SYS     SYS     SYS     0-95,192-287    0               N/A
GPU3    NV18    NV18    NV18     X      NV18    NV18    NV18    NV18    NODE    NODE    NODE    PIX     SYS     SYS     SYS     SYS     0-95,192-287    0               N/A
GPU4    NV18    NV18    NV18    NV18     X      NV18    NV18    NV18    SYS     SYS     SYS     SYS     PIX     NODE    NODE    NODE    96-191,288-383  1               N/A
GPU5    NV18    NV18    NV18    NV18    NV18     X      NV18    NV18    SYS     SYS     SYS     SYS     NODE    PIX     NODE    NODE    96-191,288-383  1               N/A
GPU6    NV18    NV18    NV18    NV18    NV18    NV18     X      NV18    SYS     SYS     SYS     SYS     NODE    NODE    PIX     PHB     96-191,288-383  1               N/A
GPU7    NV18    NV18    NV18    NV18    NV18    NV18    NV18     X      SYS     SYS     SYS     SYS     NODE    NODE    PHB     PIX     96-191,288-383  1               N/A
NIC0    PIX     NODE    NODE    NODE    SYS     SYS     SYS     SYS      X      NODE    NODE    NODE    SYS     SYS     SYS     SYS
NIC1    NODE    PIX     PHB     NODE    SYS     SYS     SYS     SYS     NODE     X      PHB     NODE    SYS     SYS     SYS     SYS
NIC2    NODE    PHB     PIX     NODE    SYS     SYS     SYS     SYS     NODE    PHB      X      NODE    SYS     SYS     SYS     SYS
NIC3    NODE    NODE    NODE    PIX     SYS     SYS     SYS     SYS     NODE    NODE    NODE     X      SYS     SYS     SYS     SYS
NIC4    SYS     SYS     SYS     SYS     PIX     NODE    NODE    NODE    SYS     SYS     SYS     SYS      X      NODE    NODE    NODE
NIC5    SYS     SYS     SYS     SYS     NODE    PIX     NODE    NODE    SYS     SYS     SYS     SYS     NODE     X      NODE    NODE
NIC6    SYS     SYS     SYS     SYS     NODE    NODE    PIX     PHB     SYS     SYS     SYS     SYS     NODE    NODE     X      PHB
NIC7    SYS     SYS     SYS     SYS     NODE    NODE    PHB     PIX     SYS     SYS     SYS     SYS     NODE    NODE    PHB      X 

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_bond_0
  NIC1: mlx5_bond_1
  NIC2: mlx5_bond_2
  NIC3: mlx5_bond_3
  NIC4: mlx5_bond_4
  NIC5: mlx5_bond_5
  NIC6: mlx5_bond_6
  NIC7: mlx5_bond_7

==============================
     Environment Variables
==============================
NVIDIA_VISIBLE_DEVICES=all
NVIDIA_REQUIRE_CUDA=cuda>=12.8 brand=unknown,driver>=470,driver<471 brand=grid,driver>=470,driver<471 brand=tesla,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=vapps,driver>=470,driver<471 brand=vpc,driver>=470,driver<471 brand=vcs,driver>=470,driver<471 brand=vws,driver>=470,driver<471 brand=cloudgaming,driver>=470,driver<471 brand=unknown,driver>=535,driver<536 brand=grid,driver>=535,driver<536 brand=tesla,driver>=535,driver<536 brand=nvidia,driver>=535,driver<536 brand=quadro,driver>=535,driver<536 brand=quadrortx,driver>=535,driver<536 brand=nvidiartx,driver>=535,driver<536 brand=vapps,driver>=535,driver<536 brand=vpc,driver>=535,driver<536 brand=vcs,driver>=535,driver<536 brand=vws,driver>=535,driver<536 brand=cloudgaming,driver>=535,driver<536 brand=unknown,driver>=550,driver<551 brand=grid,driver>=550,driver<551 brand=tesla,driver>=550,driver<551 brand=nvidia,driver>=550,driver<551 brand=quadro,driver>=550,driver<551 brand=quadrortx,driver>=550,driver<551 brand=nvidiartx,driver>=550,driver<551 brand=vapps,driver>=550,driver<551 brand=vpc,driver>=550,driver<551 brand=vcs,driver>=550,driver<551 brand=vws,driver>=550,driver<551 brand=cloudgaming,driver>=550,driver<551 brand=unknown,driver>=560,driver<561 brand=grid,driver>=560,driver<561 brand=tesla,driver>=560,driver<561 brand=nvidia,driver>=560,driver<561 brand=quadro,driver>=560,driver<561 brand=quadrortx,driver>=560,driver<561 brand=nvidiartx,driver>=560,driver<561 brand=vapps,driver>=560,driver<561 brand=vpc,driver>=560,driver<561 brand=vcs,driver>=560,driver<561 brand=vws,driver>=560,driver<561 brand=cloudgaming,driver>=560,driver<561 brand=unknown,driver>=565,driver<566 brand=grid,driver>=565,driver<566 brand=tesla,driver>=565,driver<566 brand=nvidia,driver>=565,driver<566 brand=quadro,driver>=565,driver<566 brand=quadrortx,driver>=565,driver<566 brand=nvidiartx,driver>=565,driver<566 brand=vapps,driver>=565,driver<566 brand=vpc,driver>=565,driver<566 brand=vcs,driver>=565,driver<566 brand=vws,driver>=565,driver<566 brand=cloudgaming,driver>=565,driver<566
NCCL_VERSION=2.25.1-1
NVIDIA_DRIVER_CAPABILITIES=compute,utility
NVIDIA_PRODUCT_NAME=CUDA
VLLM_USAGE_SOURCE=production-docker-image
CUDA_VERSION=12.8.1
LD_LIBRARY_PATH=/usr/local/cuda/lib64
CUDA_HOME=/usr/local/cuda
CUDA_HOME=/usr/local/cuda
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

vllm serve

python3 -m vllm.entrypoints.cli.main serve DeepSeek-V3.1 \
     --tensor-parallel-size 16 \
     --trust-remote-code \
     --port 6000 \
     --max-num-seqs 16 \
     --max-num-batched-tokens 49152 \
     --max_model_len 49152 \
     --gpu-memory-utilization 0.9 \
     --enable-expert-parallel \
     --block-size 64 \
     --enable-chunked-prefill \
     --speculative-config '{"num_speculative_tokens": 1, "method": "deepseek_mtp"}'

AssertionError

Capturing CUDA graphs (mixed prefill-decode, PIECEWISE): 100%|██████████| 7/7 [00:02<00:00,  3.03it/s]
Capturing CUDA graphs (mixed prefill-decode, PIECEWISE): 100%|██████████| 7/7 [00:02<00:00,  3.34it/s]
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m �[36m(RayWorkerWrapper pid=69924)�[0m 
Capturing CUDA graphs (decode, FULL):   0%|          | 0/6 [00:00<?, ?it/s]
Capturing CUDA graphs (decode, FULL):   0%|          | 0/6 [00:00<?, ?it/s]
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m �[36m(RayWorkerWrapper pid=45577, ip=172.16.0.48)�[0m WARNING 10-10 20:29:00 [fused_moe.py:798] Using default MoE config. Performance might be sub-optimal! Config file not found at ['/usr/local/lib/python3.12/dist-packages/vllm/model_executor/layers/fused_moe/configs/E=16,N=2048,device_name=NVIDIA_H20,dtype=fp8_w8a8,block_shape=[128,128].json']
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m �[36m(RayWorkerWrapper pid=45578, ip=172.16.0.48)�[0m INFO 10-10 20:21:29 [gpu_worker.py:298] Available KV cache memory: 26.98 GiB�[32m [repeated 15x across cluster]�[0m
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708] EngineCore failed to start.
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708] Traceback (most recent call last):
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]   File "/cfs_zhongwei/qiangqwang/vllm_project/vllm/vllm/v1/engine/core.py", line 699, in run_engine_core
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]     engine_core = EngineCoreProc(*args, **kwargs)
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]   File "/cfs_zhongwei/qiangqwang/vllm_project/vllm/vllm/v1/engine/core.py", line 498, in __init__
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]     super().__init__(vllm_config, executor_class, log_stats,
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]   File "/cfs_zhongwei/qiangqwang/vllm_project/vllm/vllm/v1/engine/core.py", line 92, in __init__
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]     self._initialize_kv_caches(vllm_config)
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]   File "/cfs_zhongwei/qiangqwang/vllm_project/vllm/vllm/v1/engine/core.py", line 207, in _initialize_kv_caches
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]     self.model_executor.initialize_from_config(kv_cache_configs)
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]   File "/cfs_zhongwei/qiangqwang/vllm_project/vllm/vllm/v1/executor/abstract.py", line 75, in initialize_from_config
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]     self.collective_rpc("compile_or_warm_up_model")
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]   File "/cfs_zhongwei/qiangqwang/vllm_project/vllm/vllm/executor/executor_base.py", line 312, in collective_rpc
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]     return self._run_workers(method, *args, **(kwargs or {}))
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]   File "/cfs_zhongwei/qiangqwang/vllm_project/vllm/vllm/executor/ray_distributed_executor.py", line 505, in _run_workers
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]     ray_worker_outputs = ray.get(ray_worker_outputs)
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]   File "/usr/local/lib/python3.12/dist-packages/ray/_private/auto_init_hook.py", line 22, in auto_init_wrapper
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]     return fn(*args, **kwargs)
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]            ^^^^^^^^^^^^^^^^^^^
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]   File "/usr/local/lib/python3.12/dist-packages/ray/_private/client_mode_hook.py", line 104, in wrapper
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]     return func(*args, **kwargs)
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]            ^^^^^^^^^^^^^^^^^^^^^
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]   File "/usr/local/lib/python3.12/dist-packages/ray/_private/worker.py", line 2882, in get
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]     values, debugger_breakpoint = worker.get_objects(object_refs, timeout=timeout)
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]                                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]   File "/usr/local/lib/python3.12/dist-packages/ray/_private/worker.py", line 968, in get_objects
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]     raise value.as_instanceof_cause()
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708] ray.exceptions.RayTaskError(AssertionError): �[36mray::RayWorkerWrapper.execute_method()�[39m (pid=45582, ip=172.16.0.48, actor_id=99c37bbc4af57d1e9c3c27ea01000000, repr=<vllm.executor.ray_utils.RayWorkerWrapper object at 0x7fe35d6c86b0>)
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]   File "/usr/local/lib/python3.12/dist-packages/vllm/worker/worker_base.py", line 276, in execute_method
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]     raise e
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]   File "/usr/local/lib/python3.12/dist-packages/vllm/worker/worker_base.py", line 267, in execute_method
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]     return run_method(self, method, args, kwargs)
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]   File "/usr/local/lib/python3.12/dist-packages/vllm/utils/__init__.py", line 3122, in run_method
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]     return func(*args, **kwargs)
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]            ^^^^^^^^^^^^^^^^^^^^^
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]   File "/usr/local/lib/python3.12/dist-packages/vllm/v1/worker/gpu_worker.py", line 344, in compile_or_warm_up_model
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]     cuda_graph_memory_bytes = self.model_runner.capture_model()
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]   File "/usr/local/lib/python3.12/dist-packages/vllm/v1/worker/gpu_model_runner.py", line 3463, in capture_model
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]     self._capture_cudagraphs(
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]   File "/usr/local/lib/python3.12/dist-packages/vllm/v1/worker/gpu_model_runner.py", line 3523, in _capture_cudagraphs
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]     self._dummy_run(num_tokens,
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]   File "/usr/local/lib/python3.12/dist-packages/torch/utils/_contextlib.py", line 120, in decorate_context
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]     return func(*args, **kwargs)
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]            ^^^^^^^^^^^^^^^^^^^^^
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]   File "/usr/local/lib/python3.12/dist-packages/vllm/v1/worker/gpu_model_runner.py", line 3080, in _dummy_run
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]     .build_for_cudagraph_capture(common_attn_metadata)
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]   File "/usr/local/lib/python3.12/dist-packages/vllm/v1/attention/backends/mla/common.py", line 652, in build_for_cudagraph_capture
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]     assert m.max_query_len <= self.reorder_batch_threshold  # decode only
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708]            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[1;36m(EngineCore_DP0 pid=69386)�[0;0m ERROR 10-10 20:29:02 [core.py:708] AssertionError

After removing assert m.max_query_len <= self.reorder_batch_threshold in vllm/v1/attention/backends/mla/common.py, no errors occurred, but precision issues appeared

curl http://0.0.0.0:6000/v1/chat/completions  \
    -H "Content-Type: application/json"   \
    -d '{
    "model": "DeepSeek-V3.1",
    "messages": [
    {
        "role": "user",
        "content": "Where is the capital of the United States?"
    }
    ],
    "stream":false,
    "max_tokens": 30
  }'

output

{"id":"chatcmpl-2c1facdd85d84f109cf8ba4341ec7807","object":"chat.completion","created":1760163652,"model":"DeepSeek-V3.1","choices":[{"index":0,"message":{"role":"assistant","content":"Of\n  \"J.3-1, 4. The\n 0, and the\n 10. 8 2. The","refusal":null,"annotations":null,"audio":null,"function_call":null,"tool_calls":[],"reasoning_content":null},"logprobs":null,"finish_reason":"length","stop_reason":null,"token_ids":null}],"service_tier":null,"system_fingerprint":null,"usage":{"prompt_tokens":13,"total_tokens":43,"completion_tokens":30,"prompt_tokens_details":null},"prompt_logprobs":null,"prompt_token_ids":null,"kv_transfer_params":null}
curl http://0.0.0.0:6000/v1/chat/completions  \
    -H "Content-Type: application/json"   \
    -d '{
    "model": "DeepSeek-V3.1",
    "messages": [
    {
        "role": "user",
        "content": "深圳有哪些好玩的地方"
    }
    ],
    "stream":false,
    "max_tokens": 300
  }'

output

{"id":"chatcmpl-409d28efbe8245feaba037e9860185de","object":"chat.completion","created":1760162920,"model":"DeepSeek-V3.1","choices":[{"index":0,"message":{"role":"assistant","content":"当然,1, 0. 1,  | 0.0. The\n    |\n| 2, M. S. 0.0, 0, I’d\n\t\t\" type of the opposite of the same as the basis of the\n 6.4    | 0.0.1- 4, the\n\n    | 0.0; 1, 0.0, 0.0.0\n    - 1 0. This is a wide\nfrom the\n    | 0.0\n    - - - 1984-07-19, and is a\n 6. The two\n    | 0.0x1, 10. The one of the\n 3.1.1-15  \"wof:name\": \"C. The\n 1.2-22. 1. \"g,0000. The first\n// The process of a sharp at the\n * @param { \"id\": \"F = \"description\": \"https://www.education of the\n        if (m. 1. The\n     * <summary>\n    |    |  (2002. 29. 2010. 0.0.0.0) {\n        < 1991. 2009-1\n    | 0, and the\n    | 0.0.0.1","refusal":null,"annotations":null,"audio":null,"function_call":null,"tool_calls":[],"reasoning_content":null},"logprobs":null,"finish_reason":"length","stop_reason":null,"token_ids":null}],"service_tier":null,"system_fingerprint":null,"usage":{"prompt_tokens":9,"total_tokens":309,"completion_tokens":300,"prompt_tokens_details":null},"prompt_logprobs":null,"prompt_token_ids":null,"kv_transfer_params":null}

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions