-
-
Notifications
You must be signed in to change notification settings - Fork 11.7k
Open
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of python collect_env.py
==============================
System Info
==============================
OS : Ubuntu 20.04.6 LTS (x86_64)
GCC version : (Ubuntu 10.5.0-1ubuntu1~20.04) 10.5.0
Clang version : Could not collect
CMake version : version 3.27.7
Libc version : glibc-2.31
==============================
PyTorch Info
==============================
PyTorch version : 2.9.0+cu128
Is debug build : False
CUDA used to build PyTorch : 12.8
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.12.12 | packaged by Anaconda, Inc. | (main, Oct 21 2025, 20:16:04) [GCC 11.2.0] (64-bit runtime)
Python platform : Linux-5.15.0-1048-aws-x86_64-with-glibc2.31
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : 12.1.105
CUDA_MODULE_LOADING set to :
GPU models and configuration : GPU 0: NVIDIA H100 80GB HBM3
Nvidia driver version : 575.57.08
cuDNN version : Could not collect
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 48 bits physical, 48 bits virtual
CPU(s): 96
On-line CPU(s) list: 0-95
Thread(s) per core: 1
Core(s) per socket: 48
Socket(s): 2
NUMA node(s): 2
Vendor ID: AuthenticAMD
CPU family: 25
Model: 1
Model name: AMD EPYC 7R13 Processor
Stepping: 1
CPU MHz: 3491.190
BogoMIPS: 5299.99
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 3 MiB
L1i cache: 3 MiB
L2 cache: 48 MiB
L3 cache: 384 MiB
NUMA node0 CPU(s): 0-47
NUMA node1 CPU(s): 48-95
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Mitigation; safe RET
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext perfctr_core invpcid_single ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save vaes vpclmulqdq rdpid
==============================
Versions of relevant libraries
==============================
[pip3] flashinfer-python==0.5.2
[pip3] mypy_extensions==1.1.0
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.8.4.1
[pip3] nvidia-cuda-cupti-cu12==12.8.90
[pip3] nvidia-cuda-nvrtc-cu12==12.8.93
[pip3] nvidia-cuda-runtime-cu12==12.8.90
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cudnn-frontend==1.16.0
[pip3] nvidia-cufft-cu12==11.3.3.83
[pip3] nvidia-cufile-cu12==1.13.1.3
[pip3] nvidia-curand-cu12==10.3.9.90
[pip3] nvidia-cusolver-cu12==11.7.3.90
[pip3] nvidia-cusparse-cu12==12.5.8.93
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-cutlass-dsl==4.3.0
[pip3] nvidia-ml-py==13.580.82
[pip3] nvidia-nccl-cu12==2.27.5
[pip3] nvidia-nvjitlink-cu12==12.8.93
[pip3] nvidia-nvshmem-cu12==3.3.20
[pip3] nvidia-nvtx-cu12==12.8.90
[pip3] pyzmq==27.1.0
[pip3] torch==2.9.0
[pip3] torchaudio==2.9.0
[pip3] torchvision==0.24.0
[pip3] transformers==4.57.2
[pip3] triton==3.5.0
[conda] flashinfer-python 0.5.2 pypi_0 pypi
[conda] numpy 2.2.6 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.8.4.1 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.8.90 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.8.93 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.8.90 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.10.2.21 pypi_0 pypi
[conda] nvidia-cudnn-frontend 1.16.0 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.3.3.83 pypi_0 pypi
[conda] nvidia-cufile-cu12 1.13.1.3 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.9.90 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.7.3.90 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.5.8.93 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.7.1 pypi_0 pypi
[conda] nvidia-cutlass-dsl 4.3.0 pypi_0 pypi
[conda] nvidia-ml-py 13.580.82 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.27.5 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.8.93 pypi_0 pypi
[conda] nvidia-nvshmem-cu12 3.3.20 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.8.90 pypi_0 pypi
[conda] pyzmq 27.1.0 py312hcf8288c_1
[conda] torch 2.9.0 pypi_0 pypi
[conda] torchaudio 2.9.0 pypi_0 pypi
[conda] torchvision 0.24.0 pypi_0 pypi
[conda] transformers 4.57.2 pypi_0 pypi
[conda] triton 3.5.0 pypi_0 pypi
==============================
vLLM Info
==============================
ROCM Version : Could not collect
vLLM Version : 0.11.2
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
GPU0 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X 0-10 0 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
==============================
Environment Variables
==============================
LD_LIBRARY_PATH=/fsx/qgallouedec/miniconda3/envs/trl/lib/python3.12/site-packages/nvidia/nvjitlink/lib:/fsx/qgallouedec/miniconda3/envs/trl/lib/python3.12/site-packages/nvidia/nvjitlink/lib:/opt/amazon/efa/lib:/opt/amazon/openmpi/lib:/opt/aws-ofi-nccl/lib:/usr/local/cuda-12.1/lib:/usr/local/cuda-12.1/lib64:/usr/local/cuda-12.1:/usr/local/cuda-12.1/targets/x86_64-linux/lib/:/usr/local/cuda-12.1/extras/CUPTI/lib64:/usr/local/lib:/usr/lib:/fsx/qgallouedec/miniconda3/envs/trl/lib/python3.12/site-packages/nvidia/nvjitlink/lib:/opt/amazon/efa/lib:/opt/amazon/openmpi/lib:/opt/aws-ofi-nccl/lib:/usr/local/cuda-12.1/lib:/usr/local/cuda-12.1/lib64:/usr/local/cuda-12.1:/usr/local/cuda-12.1/targets/x86_64-linux/lib/:/usr/local/cuda-12.1/extras/CUPTI/lib64:/usr/local/lib:/usr/lib::/opt/amazon/openmpi/lib:/opt/amazon/efa/lib:/opt/amazon/openmpi/lib:/opt/amazon/efa/lib
VLLM_LOGGING_LEVEL=ERROR
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
🐛 Describe the bug
When using the sleep mode level 2, the model produces gibberish completions:
from vllm import LLM
llm = LLM(model="openai/gpt-oss-20b", enable_sleep_mode=True)
llm.sleep(level=2)
llm.wake_up()
prompts = [[{"role": "user", "content": "Where is the Machu Picchu located?"}]]
outputs = llm.chat(prompts)
print(repr(outputs[0].outputs[0].text))'ocado \'" chemical optimal UriWord Beef nwanyị Mehmet性质Usuarioಡೆಯ profanity դեպիSleep Columbia'
notes:
- with sleep level = 1, there is no such issue:
'analysisUser asks location. Need to answer: Machu Picchu located' - the same issue occurs with version 0.10.2, 0.11.0, 0.11.1 and 0.11.2
- the same issue occurs with transformers 4.57.0 and 5.0.0.dev0
- the same issue occurs with models Qwen3 and GPT-OSS, so I guess it affects all models.
model_impl="transformers"doesn't solve the issue
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working