Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Model][LoRA]LoRA support added for glm-4v #10418

Merged
merged 4 commits into from
Nov 18, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
98 changes: 79 additions & 19 deletions vllm/model_executor/models/chatglm.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@
ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.glm4_vision_encoder import EVA2CLIPModel
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import MultiModalData, MultiModalKwargs
Expand Down Expand Up @@ -574,25 +575,8 @@ def forward(
return hidden_states


@MULTIMODAL_REGISTRY.register_image_input_mapper(mm_input_mapper_for_glmv)
@MULTIMODAL_REGISTRY.register_max_image_tokens(get_max_glmv_image_tokens)
@INPUT_REGISTRY.register_dummy_data(dummy_data_for_glmv)
@INPUT_REGISTRY.register_input_processor(input_processor_for_glmv)
class ChatGLMForCausalLM(nn.Module, SupportsLoRA, SupportsPP,
SupportsMultiModal):
packed_modules_mapping = {
"query_key_value": ["query_key_value"],
"dense_h_to_4h": ["dense_h_to_4h"]
}
# LoRA specific attributes
supported_lora_modules = [
"query_key_value",
"dense",
"dense_h_to_4h",
"dense_4h_to_h",
]
embedding_modules = {}
embedding_padding_modules = []
class ChatGLMBaseModel(nn.Module, SupportsLoRA, SupportsPP,
SupportsMultiModal):

def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
Expand Down Expand Up @@ -692,3 +676,79 @@ def load_weights(self, weights: Iterable[Tuple[str,
weight_loader(param, combined_weight)
loaded_params.add(combined_name)
return loaded_params


class ChatGLM(ChatGLMBaseModel):
packed_modules_mapping = {
"query_key_value": ["query_key_value"],
"dense_h_to_4h": ["dense_h_to_4h"]
}
# LoRA specific attributes
supported_lora_modules = [
"query_key_value",
"dense",
"dense_h_to_4h",
"dense_4h_to_h",
]

embedding_modules = {}
embedding_padding_modules = []


class ChatGLMV(ChatGLMBaseModel):
packed_modules_mapping = {
"query_key_value": ["query_key_value"],
"dense_h_to_4h": ["dense_h_to_4h"],
"merged_proj": ["gate_proj", "dense_h_to_4h"]
}
# LoRA specific attributes
supported_lora_modules = [
"query_key_value",
"dense",
"dense_h_to_4h",
"dense_4h_to_h",
# vision
"fc1",
"fc2",
"merged_proj",
"linear_proj"
]

embedding_modules = {}
embedding_padding_modules = []

def get_mm_mapping(self) -> MultiModelKeys:
"""
Get the module prefix in multimodal models
"""
return MultiModelKeys.from_string_field(
language_model="transformer.encoder",
connector="transformer.vision.linear_proj",
tower_model="transformer.vision.transformer")


@MULTIMODAL_REGISTRY.register_image_input_mapper(mm_input_mapper_for_glmv)
@MULTIMODAL_REGISTRY.register_max_image_tokens(get_max_glmv_image_tokens)
@INPUT_REGISTRY.register_dummy_data(dummy_data_for_glmv)
@INPUT_REGISTRY.register_input_processor(input_processor_for_glmv)
class ChatGLMForCausalLM(ChatGLMBaseModel, SupportsLoRA, SupportsPP,
SupportsMultiModal):
# Ensure that the LoRA support check passes when the class is not
# initialized, but set all these attributes to empty.
packed_modules_mapping = {}
supported_lora_modules = []
embedding_modules = {}
embedding_padding_modules = []

def __new__(
cls,
vllm_config: VllmConfig,
prefix: str = "",
) -> None:
config = vllm_config.model_config.hf_config
# Initialize VL
if hasattr(config, "visual"):
return ChatGLM(vllm_config=vllm_config, prefix=prefix)
# Initialize LLM
else:
return ChatGLMV(vllm_config=vllm_config, prefix=prefix)