Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bugfix] Remove hardcoded head_size=256 for Deepseek v2 and v3 #12067

Merged
merged 4 commits into from
Jan 16, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions tests/kernels/test_attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,9 +31,9 @@
NUM_PREFILL_SEQS = [3] # Arbitrary values for testing
NUM_HEADS = [(40, 40), (64, 8)] # Arbitrary values for testing

# FlashAttention forward only supports head dimension at most 128
# https://github.com/ROCmSoftwarePlatform/flash-attention/blob/3d2b6f5d037782cc2c906909a46fb7e2e1b48b25/csrc/flash_attn_rocm/flash_api.cpp#L62
HEAD_SIZES = [64, 80, 120, 256]
# This should be sync with get_supported_head_sizes() in
# vllm.attention.ops.paged_attn.PagedAttention
HEAD_SIZES = [32, 64, 80, 96, 112, 120, 128, 192, 256]

BLOCK_SIZES = [16, 32]
USE_ALIBI = [False, True]
Expand Down
9 changes: 6 additions & 3 deletions vllm/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -729,9 +729,12 @@ def get_head_size(self) -> int:
if hasattr(self.hf_text_config,
"model_type") and (self.hf_text_config.model_type
in ('deepseek_v2', 'deepseek_v3')):
# FlashAttention supports only head_size 32, 64, 128, 256,
# we need to pad head_size 192 to 256
return 256
qk_rope_head_dim = getattr(self.hf_text_config, "qk_rope_head_dim",
0)
qk_nope_head_dim = getattr(self.hf_text_config, "qk_nope_head_dim",
0)
if qk_rope_head_dim and qk_nope_head_dim:
return qk_rope_head_dim + qk_nope_head_dim

if self.is_attention_free:
return 0
Expand Down
24 changes: 7 additions & 17 deletions vllm/model_executor/models/deepseek_v2.py
Original file line number Diff line number Diff line change
Expand Up @@ -262,14 +262,8 @@ def __init__(
mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
self.scaling = self.scaling * mscale * mscale

# self.attn = Attention(self.num_heads,
# self.qk_head_dim,
# self.scaling,
# num_kv_heads=self.num_heads)

# TODO, support head_size 192
self.attn = Attention(self.num_local_heads,
256,
self.qk_head_dim,
self.scaling,
num_kv_heads=self.num_local_heads,
cache_config=cache_config,
Expand Down Expand Up @@ -319,18 +313,14 @@ def forward(
k = torch.empty_like(q)
k[..., :self.qk_nope_head_dim] = k_nope
k[..., self.qk_nope_head_dim:] = k_pe
q = torch.nn.functional.pad(q, [0, 256 - self.qk_head_dim],
value=0).view(-1,
self.num_local_heads * 256)
k = torch.nn.functional.pad(k, [0, 256 - self.qk_head_dim],
value=0).view(-1,
self.num_local_heads * 256)
v = torch.nn.functional.pad(v, [0, 256 - self.v_head_dim],
value=0).view(-1,
self.num_local_heads * 256)
# padding value to qk_head_dim for alignment
v = torch.nn.functional.pad(
v, [0, self.qk_head_dim - self.v_head_dim],
value=0).view(-1, self.num_local_heads * self.qk_head_dim)
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
attn_output = attn_output.view(
-1, self.num_local_heads, 256)[..., :self.v_head_dim].reshape(
-1, self.num_local_heads,
self.qk_head_dim)[..., :self.v_head_dim].reshape(
-1, self.num_local_heads * self.v_head_dim)
output, _ = self.o_proj(attn_output)
return output
Expand Down
24 changes: 7 additions & 17 deletions vllm/model_executor/models/deepseek_v3.py
Original file line number Diff line number Diff line change
Expand Up @@ -269,14 +269,8 @@ def __init__(
mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
self.scaling = self.scaling * mscale * mscale

# self.attn = Attention(self.num_heads,
# self.qk_head_dim,
# self.scaling,
# num_kv_heads=self.num_heads)

# TODO, support head_size 192
self.attn = Attention(self.num_local_heads,
256,
self.qk_head_dim,
self.scaling,
num_kv_heads=self.num_local_heads,
cache_config=cache_config,
Expand Down Expand Up @@ -326,18 +320,14 @@ def forward(
k = torch.empty_like(q)
k[..., :self.qk_nope_head_dim] = k_nope
k[..., self.qk_nope_head_dim:] = k_pe
q = torch.nn.functional.pad(q, [0, 256 - self.qk_head_dim],
value=0).view(-1,
self.num_local_heads * 256)
k = torch.nn.functional.pad(k, [0, 256 - self.qk_head_dim],
value=0).view(-1,
self.num_local_heads * 256)
v = torch.nn.functional.pad(v, [0, 256 - self.v_head_dim],
value=0).view(-1,
self.num_local_heads * 256)
# padding value to qk_head_dim for alignment
v = torch.nn.functional.pad(
v, [0, self.qk_head_dim - self.v_head_dim],
value=0).view(-1, self.num_local_heads * self.qk_head_dim)
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
attn_output = attn_output.view(
-1, self.num_local_heads, 256)[..., :self.v_head_dim].reshape(
-1, self.num_local_heads,
self.qk_head_dim)[..., :self.v_head_dim].reshape(
-1, self.num_local_heads * self.v_head_dim)
output, _ = self.o_proj(attn_output)
return output
Expand Down
Loading