-
-
Notifications
You must be signed in to change notification settings - Fork 5.5k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add: Support for Sparse24Bitmask Compressed Models #12097
Add: Support for Sparse24Bitmask Compressed Models #12097
Conversation
👋 Hi! Thank you for contributing to the vLLM project. Once the PR is approved and ready to go, your PR reviewer(s) can run CI to test the changes comprehensively before merging. To run CI, PR reviewers can do one of these:
🚀 |
ab892d2
to
02ff821
Compare
Add a test file with an 8B 2of4 compressed model for lm_eval_harness in buildkite
|
vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py
Outdated
Show resolved
Hide resolved
vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py
Outdated
Show resolved
Hide resolved
vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py
Outdated
Show resolved
Hide resolved
vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py
Show resolved
Hide resolved
vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py
Outdated
Show resolved
Hide resolved
02ff821
to
c38c20a
Compare
67590ad
to
96f376e
Compare
vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py
Show resolved
Hide resolved
0899c58
to
be86662
Compare
5ba7a00
to
0e1da16
Compare
This PR temporarily disables the newly added Sparse24 compression feature in example script, as support for this feature is not yet available in vLLM. Support for Sparse24 compression is being added in vLLM via [this PR](vllm-project/vllm#12097). Once that PR is merged, this change will be reverted to re-enable the feature. Signed-off-by: Rahul Tuli <rahul@neuralmagic.com>
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
can you bump ct to 0.9.1
0e1da16
to
cef0be4
Compare
vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py
Outdated
Show resolved
Hide resolved
vllm/model_executor/layers/quantization/compressed_tensors/schemes/compressed_tensors_24.py
Outdated
Show resolved
Hide resolved
This PR temporarily disables the newly added Sparse24 compression feature in example script, as support for this feature is not yet available in vLLM. Support for Sparse24 compression is being added in vLLM via [this PR](vllm-project/vllm#12097). Once that PR is merged, this change will be reverted to re-enable the feature. Signed-off-by: Rahul Tuli <rahul@neuralmagic.com>
1cc9efe
to
67ec782
Compare
This PR addresses a bug in the Cutlass integration where the `sparsity_config.ignore` list was not being respected. When only a subset of modules were configured as Sparse24, the system incorrectly selected Cutlass for non-sparse modules as well. This update ensures the correct scheme is selected for non-sparse modules, fixing this behavior. --- ### Changes - Updated logic to correctly respect `sparsity_config.ignore`. - Ensured non-sparse modules use the appropriate scheme instead of defaulting to Cutlass. --- <details> <summary>Testing Setup</summary> The fix has been tested on top of [this diff](#12097). #### Steps to Test: ```bash git checkout -b my-test-branch origin/rahul-bitmask-additions # compressed Cutlass support git revert --no-edit aa2cd2c # revert Tyler's commit to turn off Cutlass for W16A16 git cherry-pick ca624cd # this branch ``` #### Additional Patch Required: ```diff diff --git a/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py b/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py index a54177c1c..f916dd0c9 100644 --- a/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +++ b/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py @@ -9,7 +9,7 @@ from compressed_tensors.quantization import (QuantizationArgs, QuantizationStrategy, QuantizationType) from pydantic import BaseModel - +from vllm.logger import init_logger from vllm.model_executor.layers.fused_moe import FusedMoE from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase, UnquantizedLinearMethod) @@ -27,7 +27,7 @@ from vllm.model_executor.layers.quantization.compressed_tensors.utils import ( should_ignore_layer) from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod from vllm.platforms import current_platform - +logger = init_logger(__name__) __all__ = ["CompressedTensorsLinearMethod"] SPARSITY_CONFIG_NAME: Literal["sparsity_config"] = "sparsity_config" ``` Apply using: ```bash git apply logging-patch.patch ``` </details> --- <details> <summary>Models Tested</summary> - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-partial-24` - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-full-sparse24` - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-partial-24-entire-fp8-compressed` - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-partial-24-remaining-fp8-compressed` </details> --- <details> <summary>Example Output</summary> #### Layers 0-5 (Sparse24) ``` Using scheme: CompressedTensors24 for model.layers.0.self_attn.qkv_proj Using scheme: CompressedTensors24 for model.layers.0.self_attn.o_proj Using scheme: CompressedTensors24 for model.layers.0.mlp.gate_up_proj Using scheme: CompressedTensors24 for model.layers.0.mlp.down_proj ... ``` #### Layers 6+ (Non-Sparse, FP8) ``` Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.self_attn.qkv_proj Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.self_attn.o_proj Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.mlp.gate_up_proj Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.mlp.down_proj ... ``` </details> **Note:** Assumed all modules in fused layers such as `QKV_proj` and `Gate_up_proj` follow the same quantization/pruning scheme. --- For related tasks using the Asana app for GitHub, refer to [[this link](https://app.asana.com/0/0/1209227810815160)](https://app.asana.com/0/0/1209227810815160). Signed-off-by: Rahul Tuli <rahul@neuralmagic.com>
…oject#12517) This PR addresses a bug in the Cutlass integration where the `sparsity_config.ignore` list was not being respected. When only a subset of modules were configured as Sparse24, the system incorrectly selected Cutlass for non-sparse modules as well. This update ensures the correct scheme is selected for non-sparse modules, fixing this behavior. --- ### Changes - Updated logic to correctly respect `sparsity_config.ignore`. - Ensured non-sparse modules use the appropriate scheme instead of defaulting to Cutlass. --- <details> <summary>Testing Setup</summary> The fix has been tested on top of [this diff](vllm-project#12097). #### Steps to Test: ```bash git checkout -b my-test-branch origin/rahul-bitmask-additions # compressed Cutlass support git revert --no-edit aa2cd2c # revert Tyler's commit to turn off Cutlass for W16A16 git cherry-pick ca624cd # this branch ``` #### Additional Patch Required: ```diff diff --git a/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py b/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py index a54177c1c..f916dd0c9 100644 --- a/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +++ b/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py @@ -9,7 +9,7 @@ from compressed_tensors.quantization import (QuantizationArgs, QuantizationStrategy, QuantizationType) from pydantic import BaseModel - +from vllm.logger import init_logger from vllm.model_executor.layers.fused_moe import FusedMoE from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase, UnquantizedLinearMethod) @@ -27,7 +27,7 @@ from vllm.model_executor.layers.quantization.compressed_tensors.utils import ( should_ignore_layer) from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod from vllm.platforms import current_platform - +logger = init_logger(__name__) __all__ = ["CompressedTensorsLinearMethod"] SPARSITY_CONFIG_NAME: Literal["sparsity_config"] = "sparsity_config" ``` Apply using: ```bash git apply logging-patch.patch ``` </details> --- <details> <summary>Models Tested</summary> - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-partial-24` - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-full-sparse24` - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-partial-24-entire-fp8-compressed` - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-partial-24-remaining-fp8-compressed` </details> --- <details> <summary>Example Output</summary> #### Layers 0-5 (Sparse24) ``` Using scheme: CompressedTensors24 for model.layers.0.self_attn.qkv_proj Using scheme: CompressedTensors24 for model.layers.0.self_attn.o_proj Using scheme: CompressedTensors24 for model.layers.0.mlp.gate_up_proj Using scheme: CompressedTensors24 for model.layers.0.mlp.down_proj ... ``` #### Layers 6+ (Non-Sparse, FP8) ``` Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.self_attn.qkv_proj Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.self_attn.o_proj Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.mlp.gate_up_proj Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.mlp.down_proj ... ``` </details> **Note:** Assumed all modules in fused layers such as `QKV_proj` and `Gate_up_proj` follow the same quantization/pruning scheme. --- For related tasks using the Asana app for GitHub, refer to [[this link](https://app.asana.com/0/0/1209227810815160)](https://app.asana.com/0/0/1209227810815160). Signed-off-by: Rahul Tuli <rahul@neuralmagic.com> Signed-off-by: Isotr0py <2037008807@qq.com>
…oject#12517) This PR addresses a bug in the Cutlass integration where the `sparsity_config.ignore` list was not being respected. When only a subset of modules were configured as Sparse24, the system incorrectly selected Cutlass for non-sparse modules as well. This update ensures the correct scheme is selected for non-sparse modules, fixing this behavior. --- ### Changes - Updated logic to correctly respect `sparsity_config.ignore`. - Ensured non-sparse modules use the appropriate scheme instead of defaulting to Cutlass. --- <details> <summary>Testing Setup</summary> The fix has been tested on top of [this diff](vllm-project#12097). #### Steps to Test: ```bash git checkout -b my-test-branch origin/rahul-bitmask-additions # compressed Cutlass support git revert --no-edit aa2cd2c # revert Tyler's commit to turn off Cutlass for W16A16 git cherry-pick ca624cd # this branch ``` #### Additional Patch Required: ```diff diff --git a/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py b/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py index a54177c1c..f916dd0c9 100644 --- a/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +++ b/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py @@ -9,7 +9,7 @@ from compressed_tensors.quantization import (QuantizationArgs, QuantizationStrategy, QuantizationType) from pydantic import BaseModel - +from vllm.logger import init_logger from vllm.model_executor.layers.fused_moe import FusedMoE from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase, UnquantizedLinearMethod) @@ -27,7 +27,7 @@ from vllm.model_executor.layers.quantization.compressed_tensors.utils import ( should_ignore_layer) from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod from vllm.platforms import current_platform - +logger = init_logger(__name__) __all__ = ["CompressedTensorsLinearMethod"] SPARSITY_CONFIG_NAME: Literal["sparsity_config"] = "sparsity_config" ``` Apply using: ```bash git apply logging-patch.patch ``` </details> --- <details> <summary>Models Tested</summary> - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-partial-24` - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-full-sparse24` - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-partial-24-entire-fp8-compressed` - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-partial-24-remaining-fp8-compressed` </details> --- <details> <summary>Example Output</summary> #### Layers 0-5 (Sparse24) ``` Using scheme: CompressedTensors24 for model.layers.0.self_attn.qkv_proj Using scheme: CompressedTensors24 for model.layers.0.self_attn.o_proj Using scheme: CompressedTensors24 for model.layers.0.mlp.gate_up_proj Using scheme: CompressedTensors24 for model.layers.0.mlp.down_proj ... ``` #### Layers 6+ (Non-Sparse, FP8) ``` Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.self_attn.qkv_proj Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.self_attn.o_proj Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.mlp.gate_up_proj Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.mlp.down_proj ... ``` </details> **Note:** Assumed all modules in fused layers such as `QKV_proj` and `Gate_up_proj` follow the same quantization/pruning scheme. --- For related tasks using the Asana app for GitHub, refer to [[this link](https://app.asana.com/0/0/1209227810815160)](https://app.asana.com/0/0/1209227810815160). Signed-off-by: Rahul Tuli <rahul@neuralmagic.com>
…oject#12517) This PR addresses a bug in the Cutlass integration where the `sparsity_config.ignore` list was not being respected. When only a subset of modules were configured as Sparse24, the system incorrectly selected Cutlass for non-sparse modules as well. This update ensures the correct scheme is selected for non-sparse modules, fixing this behavior. --- ### Changes - Updated logic to correctly respect `sparsity_config.ignore`. - Ensured non-sparse modules use the appropriate scheme instead of defaulting to Cutlass. --- <details> <summary>Testing Setup</summary> The fix has been tested on top of [this diff](vllm-project#12097). #### Steps to Test: ```bash git checkout -b my-test-branch origin/rahul-bitmask-additions # compressed Cutlass support git revert --no-edit aa2cd2c # revert Tyler's commit to turn off Cutlass for W16A16 git cherry-pick ca624cd # this branch ``` #### Additional Patch Required: ```diff diff --git a/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py b/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py index a54177c1c..f916dd0c9 100644 --- a/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +++ b/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py @@ -9,7 +9,7 @@ from compressed_tensors.quantization import (QuantizationArgs, QuantizationStrategy, QuantizationType) from pydantic import BaseModel - +from vllm.logger import init_logger from vllm.model_executor.layers.fused_moe import FusedMoE from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase, UnquantizedLinearMethod) @@ -27,7 +27,7 @@ from vllm.model_executor.layers.quantization.compressed_tensors.utils import ( should_ignore_layer) from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod from vllm.platforms import current_platform - +logger = init_logger(__name__) __all__ = ["CompressedTensorsLinearMethod"] SPARSITY_CONFIG_NAME: Literal["sparsity_config"] = "sparsity_config" ``` Apply using: ```bash git apply logging-patch.patch ``` </details> --- <details> <summary>Models Tested</summary> - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-partial-24` - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-full-sparse24` - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-partial-24-entire-fp8-compressed` - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-partial-24-remaining-fp8-compressed` </details> --- <details> <summary>Example Output</summary> #### Layers 0-5 (Sparse24) ``` Using scheme: CompressedTensors24 for model.layers.0.self_attn.qkv_proj Using scheme: CompressedTensors24 for model.layers.0.self_attn.o_proj Using scheme: CompressedTensors24 for model.layers.0.mlp.gate_up_proj Using scheme: CompressedTensors24 for model.layers.0.mlp.down_proj ... ``` #### Layers 6+ (Non-Sparse, FP8) ``` Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.self_attn.qkv_proj Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.self_attn.o_proj Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.mlp.gate_up_proj Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.mlp.down_proj ... ``` </details> **Note:** Assumed all modules in fused layers such as `QKV_proj` and `Gate_up_proj` follow the same quantization/pruning scheme. --- For related tasks using the Asana app for GitHub, refer to [[this link](https://app.asana.com/0/0/1209227810815160)](https://app.asana.com/0/0/1209227810815160). Signed-off-by: Rahul Tuli <rahul@neuralmagic.com> Signed-off-by: Srikanth Srinivas <srikanth@astrum.ai>
…oject#12517) This PR addresses a bug in the Cutlass integration where the `sparsity_config.ignore` list was not being respected. When only a subset of modules were configured as Sparse24, the system incorrectly selected Cutlass for non-sparse modules as well. This update ensures the correct scheme is selected for non-sparse modules, fixing this behavior. --- ### Changes - Updated logic to correctly respect `sparsity_config.ignore`. - Ensured non-sparse modules use the appropriate scheme instead of defaulting to Cutlass. --- <details> <summary>Testing Setup</summary> The fix has been tested on top of [this diff](vllm-project#12097). #### Steps to Test: ```bash git checkout -b my-test-branch origin/rahul-bitmask-additions # compressed Cutlass support git revert --no-edit aa2cd2c # revert Tyler's commit to turn off Cutlass for W16A16 git cherry-pick ca624cd # this branch ``` #### Additional Patch Required: ```diff diff --git a/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py b/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py index a54177c1c..f916dd0c9 100644 --- a/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +++ b/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py @@ -9,7 +9,7 @@ from compressed_tensors.quantization import (QuantizationArgs, QuantizationStrategy, QuantizationType) from pydantic import BaseModel - +from vllm.logger import init_logger from vllm.model_executor.layers.fused_moe import FusedMoE from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase, UnquantizedLinearMethod) @@ -27,7 +27,7 @@ from vllm.model_executor.layers.quantization.compressed_tensors.utils import ( should_ignore_layer) from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod from vllm.platforms import current_platform - +logger = init_logger(__name__) __all__ = ["CompressedTensorsLinearMethod"] SPARSITY_CONFIG_NAME: Literal["sparsity_config"] = "sparsity_config" ``` Apply using: ```bash git apply logging-patch.patch ``` </details> --- <details> <summary>Models Tested</summary> - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-partial-24` - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-full-sparse24` - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-partial-24-entire-fp8-compressed` - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-partial-24-remaining-fp8-compressed` </details> --- <details> <summary>Example Output</summary> #### Layers 0-5 (Sparse24) ``` Using scheme: CompressedTensors24 for model.layers.0.self_attn.qkv_proj Using scheme: CompressedTensors24 for model.layers.0.self_attn.o_proj Using scheme: CompressedTensors24 for model.layers.0.mlp.gate_up_proj Using scheme: CompressedTensors24 for model.layers.0.mlp.down_proj ... ``` #### Layers 6+ (Non-Sparse, FP8) ``` Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.self_attn.qkv_proj Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.self_attn.o_proj Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.mlp.gate_up_proj Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.mlp.down_proj ... ``` </details> **Note:** Assumed all modules in fused layers such as `QKV_proj` and `Gate_up_proj` follow the same quantization/pruning scheme. --- For related tasks using the Asana app for GitHub, refer to [[this link](https://app.asana.com/0/0/1209227810815160)](https://app.asana.com/0/0/1209227810815160). Signed-off-by: Rahul Tuli <rahul@neuralmagic.com>
This pull request has merge conflicts that must be resolved before it can be |
This pull request has merge conflicts that must be resolved before it can be |
Signed-off-by: Rahul Tuli <rahul@neuralmagic.com>
Signed-off-by: Rahul Tuli <rahul@neuralmagic.com>
Renamed `compressed` to `compressed_weight` Address review commits from @dsikka Signed-off-by: Rahul Tuli <rahul@neuralmagic.com>
Signed-off-by: Rahul Tuli <rahul@neuralmagic.com>
Signed-off-by: Rahul Tuli <rahul@neuralmagic.com>
Signed-off-by: Rahul Tuli <rahul@neuralmagic.com>
Signed-off-by: Rahul Tuli <rahul@neuralmagic.com>
…emes/compressed_tensors_24.py Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com> Signed-off-by: Rahul Tuli <rahul@neuralmagic.com>
Signed-off-by: Rahul Tuli <rahul@neuralmagic.com>
Signed-off-by: Rahul Tuli <rahul@neuralmagic.com> Signed-off-by: Rahul Tuli <rahul@neuralmagic.com>
Signed-off-by: Rahul Tuli <rahul@neuralmagic.com>
Head branch was pushed to by a user without write access
a4ddf29
to
4cace0c
Compare
…oject#12517) This PR addresses a bug in the Cutlass integration where the `sparsity_config.ignore` list was not being respected. When only a subset of modules were configured as Sparse24, the system incorrectly selected Cutlass for non-sparse modules as well. This update ensures the correct scheme is selected for non-sparse modules, fixing this behavior. --- ### Changes - Updated logic to correctly respect `sparsity_config.ignore`. - Ensured non-sparse modules use the appropriate scheme instead of defaulting to Cutlass. --- <details> <summary>Testing Setup</summary> The fix has been tested on top of [this diff](vllm-project#12097). #### Steps to Test: ```bash git checkout -b my-test-branch origin/rahul-bitmask-additions # compressed Cutlass support git revert --no-edit aa2cd2c # revert Tyler's commit to turn off Cutlass for W16A16 git cherry-pick ca624cd # this branch ``` #### Additional Patch Required: ```diff diff --git a/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py b/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py index a54177c1c..f916dd0c9 100644 --- a/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +++ b/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py @@ -9,7 +9,7 @@ from compressed_tensors.quantization import (QuantizationArgs, QuantizationStrategy, QuantizationType) from pydantic import BaseModel - +from vllm.logger import init_logger from vllm.model_executor.layers.fused_moe import FusedMoE from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase, UnquantizedLinearMethod) @@ -27,7 +27,7 @@ from vllm.model_executor.layers.quantization.compressed_tensors.utils import ( should_ignore_layer) from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod from vllm.platforms import current_platform - +logger = init_logger(__name__) __all__ = ["CompressedTensorsLinearMethod"] SPARSITY_CONFIG_NAME: Literal["sparsity_config"] = "sparsity_config" ``` Apply using: ```bash git apply logging-patch.patch ``` </details> --- <details> <summary>Models Tested</summary> - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-partial-24` - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-full-sparse24` - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-partial-24-entire-fp8-compressed` - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-partial-24-remaining-fp8-compressed` </details> --- <details> <summary>Example Output</summary> #### Layers 0-5 (Sparse24) ``` Using scheme: CompressedTensors24 for model.layers.0.self_attn.qkv_proj Using scheme: CompressedTensors24 for model.layers.0.self_attn.o_proj Using scheme: CompressedTensors24 for model.layers.0.mlp.gate_up_proj Using scheme: CompressedTensors24 for model.layers.0.mlp.down_proj ... ``` #### Layers 6+ (Non-Sparse, FP8) ``` Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.self_attn.qkv_proj Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.self_attn.o_proj Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.mlp.gate_up_proj Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.mlp.down_proj ... ``` </details> **Note:** Assumed all modules in fused layers such as `QKV_proj` and `Gate_up_proj` follow the same quantization/pruning scheme. --- For related tasks using the Asana app for GitHub, refer to [[this link](https://app.asana.com/0/0/1209227810815160)](https://app.asana.com/0/0/1209227810815160). Signed-off-by: Rahul Tuli <rahul@neuralmagic.com> Signed-off-by: Felix Marty <felmarty@amd.com>
…oject#12517) This PR addresses a bug in the Cutlass integration where the `sparsity_config.ignore` list was not being respected. When only a subset of modules were configured as Sparse24, the system incorrectly selected Cutlass for non-sparse modules as well. This update ensures the correct scheme is selected for non-sparse modules, fixing this behavior. --- ### Changes - Updated logic to correctly respect `sparsity_config.ignore`. - Ensured non-sparse modules use the appropriate scheme instead of defaulting to Cutlass. --- <details> <summary>Testing Setup</summary> The fix has been tested on top of [this diff](vllm-project#12097). #### Steps to Test: ```bash git checkout -b my-test-branch origin/rahul-bitmask-additions # compressed Cutlass support git revert --no-edit aa2cd2c # revert Tyler's commit to turn off Cutlass for W16A16 git cherry-pick ca624cd # this branch ``` #### Additional Patch Required: ```diff diff --git a/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py b/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py index a54177c1c..f916dd0c9 100644 --- a/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py +++ b/vllm/model_executor/layers/quantization/compressed_tensors/compressed_tensors.py @@ -9,7 +9,7 @@ from compressed_tensors.quantization import (QuantizationArgs, QuantizationStrategy, QuantizationType) from pydantic import BaseModel - +from vllm.logger import init_logger from vllm.model_executor.layers.fused_moe import FusedMoE from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase, UnquantizedLinearMethod) @@ -27,7 +27,7 @@ from vllm.model_executor.layers.quantization.compressed_tensors.utils import ( should_ignore_layer) from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod from vllm.platforms import current_platform - +logger = init_logger(__name__) __all__ = ["CompressedTensorsLinearMethod"] SPARSITY_CONFIG_NAME: Literal["sparsity_config"] = "sparsity_config" ``` Apply using: ```bash git apply logging-patch.patch ``` </details> --- <details> <summary>Models Tested</summary> - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-partial-24` - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-full-sparse24` - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-partial-24-entire-fp8-compressed` - `nm-testing/TinyLlama-1.1B-Chat-v1.0-gsm8k-partial-24-remaining-fp8-compressed` </details> --- <details> <summary>Example Output</summary> #### Layers 0-5 (Sparse24) ``` Using scheme: CompressedTensors24 for model.layers.0.self_attn.qkv_proj Using scheme: CompressedTensors24 for model.layers.0.self_attn.o_proj Using scheme: CompressedTensors24 for model.layers.0.mlp.gate_up_proj Using scheme: CompressedTensors24 for model.layers.0.mlp.down_proj ... ``` #### Layers 6+ (Non-Sparse, FP8) ``` Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.self_attn.qkv_proj Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.self_attn.o_proj Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.mlp.gate_up_proj Using scheme: CompressedTensorsW8A8Fp8 for model.layers.6.mlp.down_proj ... ``` </details> **Note:** Assumed all modules in fused layers such as `QKV_proj` and `Gate_up_proj` follow the same quantization/pruning scheme. --- For related tasks using the Asana app for GitHub, refer to [[this link](https://app.asana.com/0/0/1209227810815160)](https://app.asana.com/0/0/1209227810815160). Signed-off-by: Rahul Tuli <rahul@neuralmagic.com>
This PR adds support for models compressed using
Sparse24BitMaskCompressor
to use cutlass 2:4 KernelsThis diff was manually tested on:
nm-testing/SparseLlama-3.1-8B-gsm8k-pruned.2of4-chnl_wts_per_tok_dyn_act_fp8-BitM
nm-testing/SparseLlama-3.1-8B-gsm8k-pruned.2of4-chnl_wts_per_tok_dyn_act_int8-BitM
nm-testing/SparseLlama-3.1-8B-gsm8k-pruned.2of4-tensor_wts_tensor_act_fp8-BitM
nm-testing/SparseLlama-3.1-8B-gsm8k-pruned.2of4-tensor_wts_tensor_act_int8-BitM
nm-testing/SparseLlama-3.1-8B-gsm8k-pruned.2of4-tensor_wts_per_tok_dyn_act_fp8-BitM
nm-testing/SparseLlama-3.1-8B-gsm8k-pruned.2of4-tensor_wts_per_tok_dyn_act_int8-BitM
nm-testing/SparseLlama-3.1-8B-gsm8k-pruned.2of4-chnl_wts_tensor_act_fp8-BitM
nm-testing/SparseLlama-3.1-8B-gsm8k-pruned.2of4-chnl_wts_tensor_act_int8-BitM
Also added unit tests for the compressed 2:4 fp8, int8, and sparse only cases!!
Notion Doc: https://www.notion.so/SparseBitMask-24-work-15e863ebf65c80dcbc70e6317d552987