Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -13,11 +13,11 @@ There are no pre-built wheels or images for this device, so you must build vLLM
- Intel Gaudi accelerator
- Intel Gaudi software version 1.18.0

Please follow the instructions provided in the [Gaudi Installation
Guide](https://docs.habana.ai/en/latest/Installation_Guide/index.html)
Please follow the instructions provided in the
[Gaudi Installation Guide](https://docs.habana.ai/en/latest/Installation_Guide/index.html)
to set up the execution environment. To achieve the best performance,
please follow the methods outlined in the [Optimizing Training Platform
Guide](https://docs.habana.ai/en/latest/PyTorch/Model_Optimization_PyTorch/Optimization_in_Training_Platform.html).
please follow the methods outlined in the
[Optimizing Training Platform Guide](https://docs.habana.ai/en/latest/PyTorch/Model_Optimization_PyTorch/Optimization_in_Training_Platform.html).

## Configure a new environment

Expand All @@ -32,15 +32,13 @@ pip list | grep habana # verify that habana-torch-plugin, habana-torch-dataloade
pip list | grep neural # verify that neural_compressor is installed
```

Refer to [Intel Gaudi Software Stack
Verification](https://docs.habana.ai/en/latest/Installation_Guide/SW_Verification.html#platform-upgrade)
Refer to [Intel Gaudi Software Stack Verification](https://docs.habana.ai/en/latest/Installation_Guide/SW_Verification.html#platform-upgrade)
for more details.

### Run Docker Image

It is highly recommended to use the latest Docker image from Intel Gaudi
vault. Refer to the [Intel Gaudi
documentation](https://docs.habana.ai/en/latest/Installation_Guide/Bare_Metal_Fresh_OS.html#pull-prebuilt-containers)
vault. Refer to the [Intel Gaudi documentation](https://docs.habana.ai/en/latest/Installation_Guide/Bare_Metal_Fresh_OS.html#pull-prebuilt-containers)
for more details.

Use the following commands to run a Docker image:
Expand Down Expand Up @@ -278,8 +276,9 @@ Lower value corresponds to less usable graph memory reserved for prefill stage,
:::

User can also configure the strategy for capturing HPU Graphs for prompt and decode stages separately. Strategy affects the order of capturing graphs. There are two strategies implemented:
\- `max_bs` - graph capture queue will sorted in descending order by their batch sizes. Buckets with equal batch sizes are sorted by sequence length in ascending order (e.g. `(64, 128)`, `(64, 256)`, `(32, 128)`, `(32, 256)`, `(1, 128)`, `(1,256)`), default strategy for decode
\- `min_tokens` - graph capture queue will be sorted in ascending order by the number of tokens each graph processes (`batch_size*sequence_length`), default strategy for prompt

- `max_bs` - graph capture queue will sorted in descending order by their batch sizes. Buckets with equal batch sizes are sorted by sequence length in ascending order (e.g. `(64, 128)`, `(64, 256)`, `(32, 128)`, `(32, 256)`, `(1, 128)`, `(1,256)`), default strategy for decode
- `min_tokens` - graph capture queue will be sorted in ascending order by the number of tokens each graph processes (`batch_size*sequence_length`), default strategy for prompt

When there's large amount of requests pending, vLLM scheduler will attempt to fill the maximum batch size for decode as soon as possible. When a request is finished, decode batch size decreases. When that happens, vLLM will attempt to schedule a prefill iteration for requests in the waiting queue, to fill the decode batch size to its previous state. This means that in a full load scenario, decode batch size is often at its maximum, which makes large batch size HPU Graphs crucial to capture, as reflected by `max_bs` strategy. On the other hand, prefills will be executed most frequently with very low batch sizes (1-4), which is reflected in `min_tokens` strategy.

Expand Down Expand Up @@ -326,8 +325,7 @@ INFO 08-02 17:38:43 hpu_executor.py:91] init_cache_engine took 37.92 GiB of devi
- We recommend running inference on Gaudi 2 with `block_size` of 128
for BF16 data type. Using default values (16, 32) might lead to
sub-optimal performance due to Matrix Multiplication Engine
under-utilization (see [Gaudi
Architecture](https://docs.habana.ai/en/latest/Gaudi_Overview/Gaudi_Architecture.html)).
under-utilization (see [Gaudi Architecture](https://docs.habana.ai/en/latest/Gaudi_Overview/Gaudi_Architecture.html)).
- For max throughput on Llama 7B, we recommend running with batch size
of 128 or 256 and max context length of 2048 with HPU Graphs enabled.
If you encounter out-of-memory issues, see troubleshooting section.
Expand All @@ -336,11 +334,11 @@ INFO 08-02 17:38:43 hpu_executor.py:91] init_cache_engine took 37.92 GiB of devi

**Diagnostic and profiling knobs:**

- `VLLM_PROFILER_ENABLED`: if `true`, high level profiler will be enabled. Resulting JSON traces can be viewed in [perfetto.habana.ai](https://perfetto.habana.ai/#!/viewer). Disabled by default.
- `VLLM_HPU_LOG_STEP_GRAPH_COMPILATION`: if `true`, will log graph compilations per each vLLM engine step, only when there was any - highly recommended to use alongside `PT_HPU_METRICS_GC_DETAILS=1`. Disabled by default.
- `VLLM_HPU_LOG_STEP_GRAPH_COMPILATION_ALL`: if `true`, will log graph compilations per each vLLM engine step, always, even if there were none. Disabled by default.
- `VLLM_HPU_LOG_STEP_CPU_FALLBACKS`: if `true`, will log cpu fallbacks per each vLLM engine step, only when there was any. Disabled by default.
- `VLLM_HPU_LOG_STEP_CPU_FALLBACKS_ALL`: if `true`, will log cpu fallbacks per each vLLM engine step, always, even if there were none. Disabled by default.
- `VLLM_PROFILER_ENABLED`: If `true`, enable the high level profiler. Resulting JSON traces can be viewed in [perfetto.habana.ai](https://perfetto.habana.ai/#!/viewer). `false` by default.
- `VLLM_HPU_LOG_STEP_GRAPH_COMPILATION`: If `true`, log graph compilations for each vLLM engine step when any occurs. Highly recommended to use with `PT_HPU_METRICS_GC_DETAILS=1`. `false` by default.
- `VLLM_HPU_LOG_STEP_GRAPH_COMPILATION_ALL`: If `true`, always log graph compilations for each vLLM engine step even if none occurred. `false` by default.
- `VLLM_HPU_LOG_STEP_CPU_FALLBACKS`: If `true`, log CPU fallbacks for each vLLM engine step when any occurs. `false` by default.
- `VLLM_HPU_LOG_STEP_CPU_FALLBACKS_ALL`: if `true`, always log CPU fallbacks for each vLLM engine step even if none occurred. `false` by default.

**Performance tuning knobs:**

Expand Down Expand Up @@ -381,7 +379,7 @@ INFO 08-02 17:38:43 hpu_executor.py:91] init_cache_engine took 37.92 GiB of devi

Additionally, there are HPU PyTorch Bridge environment variables impacting vLLM execution:

- `PT_HPU_LAZY_MODE`: if `0`, PyTorch Eager backend for Gaudi will be used, if `1` PyTorch Lazy backend for Gaudi will be used, `1` is default
- `PT_HPU_LAZY_MODE`: if `0`, PyTorch Eager backend for Gaudi will be used; if `1`, PyTorch Lazy backend for Gaudi will be used. `1` is default.
- `PT_HPU_ENABLE_LAZY_COLLECTIVES`: required to be `true` for tensor parallel inference with HPU Graphs

## Troubleshooting: tweaking HPU graphs
Expand Down