Skip to content

Conversation

@eicherseiji
Copy link
Contributor

@eicherseiji eicherseiji commented Jun 11, 2025

Essential Elements of an Effective PR Description Checklist

  • The purpose of the PR, such as "Fix some issue (link existing issues this PR will resolve)".
  • The test plan, such as providing test command.
  • The test results, such as pasting the results comparison before and after, or e2e results
  • (Optional) The necessary documentation update, such as updating supported_models.md and examples for a new model.

Purpose

Fix crash due to pickle serialization error, regression from #18640.

Reproducer:

from ray import serve
from ray.serve.llm import LLMConfig, build_openai_app

llm_config = LLMConfig(
    model_loading_config=dict(
        model_id="deepseek",
        model_source="deepseek-ai/DeepSeek-V2-Lite",
    ),
    runtime_env=dict(
        env_vars={"VLLM_USE_V1": "1"}
    ),
    deployment_config=dict(
        autoscaling_config=dict(min_replicas=1, max_replicas=1),
    ),
    engine_kwargs=dict(
        tensor_parallel_size=2,
        pipeline_parallel_size=2,
        gpu_memory_utilization=0.92,
        dtype="auto",
        max_num_seqs=40,
        max_model_len=16384,
        enable_chunked_prefill=True,
        enable_prefix_caching=True,
        trust_remote_code=True,
    ),
)

app = build_openai_app({"llm_configs": [llm_config]})
serve.run(app, blocking=True)

Logs:

(base) ray@ip-10-0-187-137:~/default/test$ python serve.py 
INFO 06-11 13:15:22 [__init__.py:243] Automatically detected platform cuda.
2025-06-11 13:15:26,248 INFO worker.py:1736 -- Connecting to existing Ray cluster at address: 10.0.187.137:6379...
2025-06-11 13:15:26,260 INFO worker.py:1907 -- Connected to Ray cluster. View the dashboard at https://session-wt3bx4gfx89xq279ieluvgpthx.i.anyscaleuserdata.com 
2025-06-11 13:15:26,261 INFO packaging.py:380 -- Pushing file package 'gcs://_ray_pkg_9ff90b59d6f4660e7f58c35c2920d87d050382c3.zip' (0.00MiB) to Ray cluster...
2025-06-11 13:15:26,262 INFO packaging.py:393 -- Successfully pushed file package 'gcs://_ray_pkg_9ff90b59d6f4660e7f58c35c2920d87d050382c3.zip'.
INFO 2025-06-11 13:15:26,367 serve 60859 -- Connecting to existing Serve app in namespace "serve". New http options will not be applied.
(ServeController pid=45327) INFO 2025-06-11 13:15:26,392 controller 45327 -- Deploying new version of Deployment(name='LLMDeploymentdeepseek', app='default') (initial target replicas: 1).
(ServeController pid=45327) INFO 2025-06-11 13:15:26,393 controller 45327 -- Deploying new version of Deployment(name='LLMRouter', app='default') (initial target replicas: 2).
(ServeController pid=45327) INFO 2025-06-11 13:15:26,497 controller 45327 -- Adding 1 replica to Deployment(name='LLMDeploymentdeepseek', app='default').
(ServeController pid=45327) INFO 2025-06-11 13:15:26,500 controller 45327 -- Stopping 1 replicas of Deployment(name='LLMRouter', app='default') with outdated versions.
(ServeController pid=45327) INFO 2025-06-11 13:15:26,500 controller 45327 -- Adding 1 replica to Deployment(name='LLMRouter', app='default').
(ServeController pid=45327) INFO 2025-06-11 13:15:26,637 controller 45327 -- Replica(id='xwtag3zo', deployment='LLMRouter', app='default') did not shut down after grace period, force-killing it. 
(ServeController pid=45327) INFO 2025-06-11 13:15:26,742 controller 45327 -- Replica(id='xwtag3zo', deployment='LLMRouter', app='default') is stopped.
(ServeReplica:default:LLMDeploymentdeepseek pid=61051) INFO 06-11 13:15:30 [__init__.py:243] Automatically detected platform cuda.
(ServeReplica:default:LLMDeploymentdeepseek pid=61051) INFO 2025-06-11 13:15:33,682 default_LLMDeploymentdeepseek 03l9rrsq -- Running tasks to download model files on worker nodes
(download_model_files pid=61269) No cloud storage mirror configured
(ServeReplica:default:LLMDeploymentdeepseek pid=61051) You are using a model of type deepseek_v2 to instantiate a model of type . This is not supported for all configurations of models and can yield errors.
(ServeReplica:default:LLMDeploymentdeepseek pid=61051) You are using a model of type deepseek_v2 to instantiate a model of type . This is not supported for all configurations of models and can yield errors.
(pid=61380) INFO 06-11 13:15:40 [__init__.py:243] Automatically detected platform cuda. [repeated 2x across cluster] (Ray deduplicates logs by default. Set RAY_DEDUP_LOGS=0 to disable log deduplication, or see https://docs.ray.io/en/master/ray-observability/user-guides/configure-logging.html#log-deduplication for more options.)
(_get_vllm_engine_config pid=61380) INFO 06-11 13:15:43 [__init__.py:31] Available plugins for group vllm.general_plugins:
(_get_vllm_engine_config pid=61380) INFO 06-11 13:15:43 [__init__.py:33] - lora_filesystem_resolver -> vllm.plugins.lora_resolvers.filesystem_resolver:register_filesystem_resolver
(_get_vllm_engine_config pid=61380) INFO 06-11 13:15:43 [__init__.py:36] All plugins in this group will be loaded. Set `VLLM_PLUGINS` to control which plugins to load.
(_get_vllm_engine_config pid=61380) INFO 06-11 13:15:43 [config.py:213] Replacing legacy 'type' key with 'rope_type'
(ServeController pid=45327) WARNING 2025-06-11 13:15:45,277 controller 45327 -- Deployment 'LLMRouter' in application 'default' has 1 replicas that have taken more than 30s to initialize.
(ServeController pid=45327) This may be caused by a slow __init__ or reconfigure method.
(ServeReplica:default:LLMDeploymentdeepseek pid=61051) INFO 2025-06-11 13:15:50,960 default_LLMDeploymentdeepseek 03l9rrsq -- Using executor class: <class 'vllm.v1.executor.ray_distributed_executor.RayDistributedExecutor'>
(_get_vllm_engine_config pid=61380) INFO 06-11 13:15:50 [config.py:793] This model supports multiple tasks: {'classify', 'score', 'generate', 'embed', 'reward'}. Defaulting to 'generate'.
(_get_vllm_engine_config pid=61380) INFO 06-11 13:15:50 [config.py:2118] Chunked prefill is enabled with max_num_batched_tokens=2048.
(ServeController pid=45327) ERROR 2025-06-11 13:15:51,444 controller 45327 -- Exception in Replica(id='03l9rrsq', deployment='LLMDeploymentdeepseek', app='default'), the replica will be stopped.
(ServeController pid=45327) Traceback (most recent call last):
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/site-packages/ray/serve/_private/deployment_state.py", line 718, in check_ready
(ServeController pid=45327)     ) = ray.get(self._ready_obj_ref)
(ServeController pid=45327)         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/site-packages/ray/_private/auto_init_hook.py", line 22, in auto_init_wrapper
(ServeController pid=45327)     return fn(*args, **kwargs)
(ServeController pid=45327)            ^^^^^^^^^^^^^^^^^^^
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/site-packages/ray/_private/client_mode_hook.py", line 104, in wrapper
(ServeController pid=45327)     return func(*args, **kwargs)
(ServeController pid=45327)            ^^^^^^^^^^^^^^^^^^^^^
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/site-packages/ray/_private/worker.py", line 2847, in get
(ServeController pid=45327)     values, debugger_breakpoint = worker.get_objects(object_refs, timeout=timeout)
(ServeController pid=45327)                                   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/site-packages/ray/_private/worker.py", line 947, in get_objects
(ServeController pid=45327)     raise value.as_instanceof_cause()
(ServeController pid=45327) ray.exceptions.RayTaskError(RuntimeError): ray::ServeReplica:default:LLMDeploymentdeepseek.initialize_and_get_metadata() (pid=61051, ip=10.0.187.137, actor_id=1a881caf72ab8c176d3b7ca002000000, repr=<ray.serve._private.replica.ServeReplica:default:LLMDeploymentdeepseek object at 0x777a863fc510>)
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/concurrent/futures/_base.py", line 449, in result
(ServeController pid=45327)     return self.__get_result()
(ServeController pid=45327)            ^^^^^^^^^^^^^^^^^^^
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/concurrent/futures/_base.py", line 401, in __get_result
(ServeController pid=45327)     raise self._exception
(ServeController pid=45327)            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/site-packages/ray/serve/_private/replica.py", line 1022, in initialize_and_get_metadata
(ServeController pid=45327)     await self._replica_impl.initialize(deployment_config)
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/site-packages/ray/serve/_private/replica.py", line 730, in initialize
(ServeController pid=45327)     raise RuntimeError(traceback.format_exc()) from None
(ServeController pid=45327) RuntimeError: Traceback (most recent call last):
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/site-packages/ray/serve/_private/replica.py", line 703, in initialize
(ServeController pid=45327)     self._user_callable_asgi_app = await asyncio.wrap_future(
(ServeController pid=45327)                                    ^^^^^^^^^^^^^^^^^^^^^^^^^^
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/site-packages/ray/serve/_private/replica.py", line 1442, in initialize_callable
(ServeController pid=45327)     await self._call_func_or_gen(
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/site-packages/ray/serve/_private/replica.py", line 1388, in _call_func_or_gen
(ServeController pid=45327)     result = await result
(ServeController pid=45327)              ^^^^^^^^^^^^
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/site-packages/ray/llm/_internal/serve/deployments/llm/llm_server.py", line 442, in __init__
(ServeController pid=45327)     await asyncio.wait_for(self._start_engine(), timeout=ENGINE_START_TIMEOUT_S)
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/asyncio/tasks.py", line 489, in wait_for
(ServeController pid=45327)     return fut.result()
(ServeController pid=45327)            ^^^^^^^^^^^^
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/site-packages/ray/llm/_internal/serve/deployments/llm/llm_server.py", line 488, in _start_engine
(ServeController pid=45327)     await self.engine.start()
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/site-packages/ray/llm/_internal/serve/deployments/llm/vllm/vllm_engine.py", line 280, in start
(ServeController pid=45327)     self.engine = await self._start_engine()
(ServeController pid=45327)                   ^^^^^^^^^^^^^^^^^^^^^^^^^^
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/site-packages/ray/llm/_internal/serve/deployments/llm/vllm/vllm_engine.py", line 337, in _start_engine
(ServeController pid=45327)     return await self._start_engine_v1()
(ServeController pid=45327)            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/site-packages/ray/llm/_internal/serve/deployments/llm/vllm/vllm_engine.py", line 405, in _start_engine_v1
(ServeController pid=45327)     return self._start_async_llm_engine(
(ServeController pid=45327)            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/site-packages/ray/llm/_internal/serve/deployments/llm/vllm/vllm_engine.py", line 528, in _start_async_llm_engine
(ServeController pid=45327)     engine = vllm.engine.async_llm_engine.AsyncLLMEngine(
(ServeController pid=45327)              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/site-packages/vllm/v1/engine/async_llm.py", line 123, in __init__
(ServeController pid=45327)     self.engine_core = core_client_class(
(ServeController pid=45327)                        ^^^^^^^^^^^^^^^^^^
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/site-packages/vllm/v1/engine/core_client.py", line 738, in __init__
(ServeController pid=45327)     super().__init__(
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/site-packages/vllm/v1/engine/core_client.py", line 408, in __init__
(ServeController pid=45327)     self.resources.local_engine_manager = CoreEngineProcManager(
(ServeController pid=45327)                                           ^^^^^^^^^^^^^^^^^^^^^^
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/site-packages/vllm/v1/utils.py", line 142, in __init__
(ServeController pid=45327)     proc.start()
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/multiprocessing/process.py", line 121, in start
(ServeController pid=45327)     self._popen = self._Popen(self)
(ServeController pid=45327)                   ^^^^^^^^^^^^^^^^^
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/multiprocessing/context.py", line 288, in _Popen
(ServeController pid=45327)     return Popen(process_obj)
(ServeController pid=45327)            ^^^^^^^^^^^^^^^^^^
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/multiprocessing/popen_spawn_posix.py", line 32, in __init__
(ServeController pid=45327)     super().__init__(process_obj)
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/multiprocessing/popen_fork.py", line 19, in __init__
(ServeController pid=45327)     self._launch(process_obj)
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/multiprocessing/popen_spawn_posix.py", line 47, in _launch
(ServeController pid=45327)     reduction.dump(process_obj, fp)
(ServeController pid=45327)   File "/home/ray/anaconda3/lib/python3.11/multiprocessing/reduction.py", line 60, in dump
(ServeController pid=45327)     ForkingPickler(file, protocol).dump(obj)
(ServeController pid=45327) _pickle.PicklingError: Can't pickle <class 'transformers_modules.deepseek-ai.DeepSeek-V2-Lite.604d5664dddd88a0433dbae533b7fe9472482de0.configuration_deepseek.DeepseekV2Config'>: import of module 'transformers_modules.deepseek-ai.DeepSeek-V2-Lite.604d5664dddd88a0433dbae533b7fe9472482de0.configuration_deepseek' failed
(ServeController pid=45327) INFO 2025-06-11 13:15:51,447 controller 45327 -- Adding 1 replica to Deployment(name='LLMDeploymentdeepseek', app='default').
(ServeReplica:default:LLMDeploymentdeepseek pid=61051) WARNING 06-11 13:15:51 [utils.py:2531] We must use the `spawn` multiprocessing start method. Overriding VLLM_WORKER_MULTIPROC_METHOD to 'spawn'. See https://docs.vllm.ai/en/latest/usage/troubleshooting.html#python-multiprocessing for more information. Reason: In a Ray actor and can only be spawned
(ServeController pid=45327) INFO 2025-06-11 13:15:51,558 controller 45327 -- Replica(id='03l9rrsq', deployment='LLMDeploymentdeepseek', app='default') is stopped.
(ServeReplica:default:LLMDeploymentdeepseek pid=61784) INFO 06-11 13:15:56 [__init__.py:243] Automatically detected platform cuda.
(ServeReplica:default:LLMDeploymentdeepseek pid=61784) INFO 2025-06-11 13:15:58,952 default_LLMDeploymentdeepseek c123c9hd -- Running tasks to download model files on worker nodes
(download_model_files pid=61905) No cloud storage mirror configured
(ServeReplica:default:LLMDeploymentdeepseek pid=61784) You are using a model of type deepseek_v2 to instantiate a model of type . This is not supported for all configurations of models and can yield errors.
(ServeReplica:default:LLMDeploymentdeepseek pid=61784) You are using a model of type deepseek_v2 to instantiate a model of type . This is not supported for all configurations of models and can yield errors.
(pid=62013) INFO 06-11 13:16:05 [__init__.py:243] Automatically detected platform cuda.
(_get_vllm_engine_config pid=62013) INFO 06-11 13:16:08 [__init__.py:31] Available plugins for group vllm.general_plugins:
(_get_vllm_engine_config pid=62013) INFO 06-11 13:16:08 [__init__.py:33] - lora_filesystem_resolver -> vllm.plugins.lora_resolvers.filesystem_resolver:register_filesystem_resolver
(_get_vllm_engine_config pid=62013) INFO 06-11 13:16:08 [__init__.py:36] All plugins in this group will be loaded. Set `VLLM_PLUGINS` to control which plugins to load.
(_get_vllm_engine_config pid=62013) INFO 06-11 13:16:08 [config.py:213] Replacing legacy 'type' key with 'rope_type'
^CTraceback (most recent call last):
  File "/home/ray/default/test/serve.py", line 29, in <module>
    serve.run(app, blocking=True)
  File "/home/ray/anaconda3/lib/python3.11/site-packages/ray/serve/api.py", line 721, in run
    handle = _run(
             ^^^^^
  File "/home/ray/anaconda3/lib/python3.11/site-packages/ray/serve/api.py", line 631, in _run
    return _run_many(
           ^^^^^^^^^^
  File "/home/ray/anaconda3/lib/python3.11/site-packages/ray/serve/api.py", line 609, in _run_many
    return client.deploy_applications(
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/ray/anaconda3/lib/python3.11/site-packages/ray/serve/_private/client.py", line 53, in check
    return f(self, *args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^
  File "/home/ray/anaconda3/lib/python3.11/site-packages/ray/serve/_private/client.py", line 312, in deploy_applications
    self._wait_for_application_running(app.name)
  File "/home/ray/anaconda3/lib/python3.11/site-packages/ray/serve/_private/client.py", line 244, in _wait_for_application_running
    time.sleep(CLIENT_POLLING_INTERVAL_S)
KeyboardInterrupt

Test Plan

Test Result

The exception is not seen when running the reproducer script.

(Optional) Documentation Update

@github-actions
Copy link

👋 Hi! Thank you for contributing to the vLLM project.

💬 Join our developer Slack at https://slack.vllm.ai to discuss your PR in #pr-reviews, coordinate on features in #feat- channels, or join special interest groups in #sig- channels.

Just a reminder: PRs would not trigger full CI run by default. Instead, it would only run fastcheck CI which starts running only a small and essential subset of CI tests to quickly catch errors. You can run other CI tests on top of those by going to your fastcheck build on Buildkite UI (linked in the PR checks section) and unblock them. If you do not have permission to unblock, ping simon-mo or khluu to add you in our Buildkite org.

Once the PR is approved and ready to go, your PR reviewer(s) can run CI to test the changes comprehensively before merging.

To run CI, PR reviewers can either: Add ready label to the PR or enable auto-merge.

🚀

Copy link
Contributor

@gemini-code-assist gemini-code-assist bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Summary of Changes

Hello @eicherseiji, I'm Gemini Code Assist1! I'm currently reviewing this pull request and will post my feedback shortly. In the meantime, here's a summary to help you and other reviewers quickly get up to speed!

This pull request fixes a critical pickling error that prevented the deployment of certain models requiring trust_remote_code in multiprocessing environments. I've updated the serialization logic to use cloudpickle more robustly for VllmConfig objects, ensuring they can be passed between processes regardless of whether the dynamically loaded transformers_modules package is directly importable in the target process.

Highlights

  • Bugfix: Pickling Error: I've addressed a _pickle.PicklingError that occurred when deploying models requiring trust_remote_code (like DeepSeek-V2-Lite) in environments using multiprocessing (like Ray Serve/vLLM workers). The error happened because custom configuration classes loaded via trust_remote_code into transformers_modules were not available in spawned processes, preventing standard pickling.
  • Serialization Logic Update: I've modified the _register_config_reducer function in vllm/transformers_utils/config.py to ensure that VllmConfig objects, which may contain references to these custom classes, are always serialized using cloudpickle's by-value mechanism when passed between processes via multiprocessing.reducer. This works even if the custom class definition isn't directly importable in the target process.
  • Conditional Cloudpickle Registration: The registration of the transformers_modules package itself with cloudpickle.register_pickle_by_value is now conditional on transformers_modules being importable in the current process. This prevents errors in environments where this dynamic module isn't present, while still allowing VllmConfig objects to be serialized correctly.
Using Gemini Code Assist

The full guide for Gemini Code Assist can be found on our documentation page, here are some quick tips.

Invoking Gemini

You can request assistance from Gemini at any point in your pull request via creating an issue comment (i.e. comment on the pull request page) using either /gemini <command> or @gemini-code-assist <command>. Below is a summary of the supported commands.

Feature Command Description
Code Review /gemini review Performs a code review for the current pull request in its current state.
Pull Request Summary /gemini summary Provides a summary of the current pull request in its current state.
Comment @gemini-code-assist Responds in comments when explicitly tagged, both in issue comments and review comments.
Help /gemini help Displays a list of available commands.

Customization

To customize Gemini Code Assist for GitHub experience, repository maintainers can create a configuration file and/or provide a custom code review style guide (such as PEP-8 for Python) by creating and adding files to a .gemini/ folder in the base of the repository. Detailed instructions can be found here.

Limitations & Feedback

Gemini Code Assist is currently in preview and may make mistakes. Please leave feedback on any instances where its feedback is incorrect or counter productive. You can react with 👍 and 👎 on @gemini-code-assist comments to provide feedback.

You can also get AI-powered code generation, chat, as well as code reviews directly in the IDE at no cost with the Gemini Code Assist IDE Extension.

Footnotes

  1. Review the Privacy Notices, Generative AI Prohibited Use Policy, Terms of Service, and learn how to configureGemini Code Assist in GitHub here. Gemini can make mistakes, so double check it and use code with caution.

Copy link
Contributor

@gemini-code-assist gemini-code-assist bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Code Review

This pull request addresses a _pickle.PicklingError that occurred when transformers_modules could not be imported, which prevented the registration of a custom multiprocessing reducer for VllmConfig. The fix correctly ensures that the reducer for VllmConfig (using cloudpickle) is registered regardless of transformers_modules availability, as long as cloudpickle itself is available. The registration specific to transformers_modules remains conditional on its availability. This change enhances the robustness of pickling VllmConfig objects in multiprocessing scenarios. The provided reproducer and logs clearly illustrate the issue, and the fix appears to directly address it. The code changes are clean and logical.

Copy link
Collaborator

@kouroshHakha kouroshHakha left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

looks good.

Copy link
Collaborator

@kouroshHakha kouroshHakha left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

looks good.

Copy link
Collaborator

@kouroshHakha kouroshHakha left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actually could we devise a minimal ci test for this?

@eicherseiji eicherseiji force-pushed the register_pickle_by_value branch from 1fd22c3 to f861425 Compare July 1, 2025 23:22
@kouroshHakha kouroshHakha added the ready ONLY add when PR is ready to merge/full CI is needed label Jul 3, 2025
Signed-off-by: Seiji Eicher <seiji@anyscale.com>
Signed-off-by: Seiji Eicher <seiji@anyscale.com>
@eicherseiji eicherseiji force-pushed the register_pickle_by_value branch from f861425 to 479480f Compare July 3, 2025 17:06
@simon-mo simon-mo enabled auto-merge (squash) July 3, 2025 18:59
@simon-mo simon-mo merged commit 8d1096e into vllm-project:main Jul 3, 2025
66 checks passed
Pradyun92 pushed a commit to Pradyun92/vllm that referenced this pull request Aug 6, 2025
npanpaliya pushed a commit to odh-on-pz/vllm-upstream that referenced this pull request Aug 6, 2025
jinzhen-lin pushed a commit to jinzhen-lin/vllm that referenced this pull request Aug 9, 2025
…llm-project#19510)

Signed-off-by: Seiji Eicher <seiji@anyscale.com>
Signed-off-by: Jinzhen Lin <linjinzhen@hotmail.com>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

ready ONLY add when PR is ready to merge/full CI is needed

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants