Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 9 additions & 6 deletions vllm/model_executor/layers/fused_moe/layer.py
Original file line number Diff line number Diff line change
Expand Up @@ -1755,9 +1755,6 @@ def forward_impl(
self.dp_size > 1
and not self.moe_parallel_config.use_deepep_ht_kernels
and not self.moe_config.use_flashinfer_cutlass_kernels)
if do_naive_dispatch_combine:
hidden_states, router_logits = get_ep_group().dispatch(
hidden_states, router_logits)

# If there are shared experts but we are not using a modular kernel, the
# shared experts must be called here
Expand All @@ -1768,6 +1765,10 @@ def forward_impl(
else:
shared_output = None

if do_naive_dispatch_combine:
hidden_states, router_logits = get_ep_group().dispatch(
hidden_states, router_logits)

# Matrix multiply.
final_hidden_states = self.quant_method.apply(
layer=self,
Expand Down Expand Up @@ -1800,8 +1801,9 @@ def forward_impl(
final_hidden_states,
)

def reduce_output(states: torch.Tensor) -> torch.Tensor:
if do_naive_dispatch_combine:
def reduce_output(states: torch.Tensor,
do_combine: bool = True) -> torch.Tensor:
if do_naive_dispatch_combine and do_combine:
states = get_ep_group().combine(states)

if self.reduce_results and (self.tp_size > 1 or self.ep_size > 1):
Expand All @@ -1810,10 +1812,11 @@ def reduce_output(states: torch.Tensor) -> torch.Tensor:
return states

if self.shared_experts is None:
assert not isinstance(final_hidden_states, tuple)
return reduce_output(final_hidden_states)
else:
return (
reduce_output(final_hidden_states[0]),
reduce_output(final_hidden_states[0], do_combine=False),
reduce_output(final_hidden_states[1]),
)

Expand Down