Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Frontend][Core] Update Outlines Integration from FSM to Guide #4109

Merged
merged 17 commits into from
Jun 5, 2024
Merged
Show file tree
Hide file tree
Changes from 16 commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion requirements-common.txt
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,6 @@ prometheus_client >= 0.18.0
prometheus-fastapi-instrumentator >= 7.0.0
tiktoken >= 0.6.0 # Required for DBRX tokenizer
lm-format-enforcer == 0.10.1
outlines == 0.0.34 # Requires torch >= 2.1.0
outlines >= 0.0.41 # Requires torch >= 2.1.0
typing_extensions
filelock >= 3.10.4 # filelock starts to support `mode` argument from 3.10.4
2 changes: 0 additions & 2 deletions tests/entrypoints/test_guided_processors.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,6 @@ def test_guided_logits_processors():
tokenizer,
whitespace_pattern=None)

regex_LP.init_state()
token_ids = tokenizer.encode(
f"Give an example IPv4 address with this regex: {TEST_REGEX}")
tensor = torch.rand(32000)
Expand All @@ -72,7 +71,6 @@ def test_guided_logits_processors():
assert tensor.shape == original_tensor.shape
assert not torch.allclose(tensor, original_tensor)

json_LP.init_state()
token_ids = tokenizer.encode(
f"Give an employee profile that fits this schema: {TEST_SCHEMA}")
tensor = torch.rand(32000)
Expand Down
31 changes: 12 additions & 19 deletions vllm/model_executor/guided_decoding/outlines_decoding.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,6 @@
import asyncio
import concurrent.futures
from copy import copy
from enum import Enum
from functools import lru_cache
from json import dumps as json_dumps
from re import escape as regex_escape
from typing import Tuple, Union
Expand Down Expand Up @@ -54,8 +52,10 @@ class GuidedDecodingMode(Enum):


async def get_outlines_guided_decoding_logits_processor(
request: Union[CompletionRequest, ChatCompletionRequest],
tokenizer) -> Union[JSONLogitsProcessor, RegexLogitsProcessor, None]:
request: Union[CompletionRequest,
ChatCompletionRequest], tokenizer: PreTrainedTokenizerBase
) -> Union[JSONLogitsProcessor, RegexLogitsProcessor, CFGLogitsProcessor,
None]:
"""
Given an OpenAI-compatible request, check for guided decoding parameters
and get the necessary logits processor for the given guide.
Expand All @@ -64,23 +64,17 @@ async def get_outlines_guided_decoding_logits_processor(
"""
global global_thread_pool
guide, mode = _get_guide_and_mode(request)
if not guide:
if not guide or not mode:
return None

if global_thread_pool is None:
global_thread_pool = concurrent.futures.ThreadPoolExecutor(
max_workers=2)
loop = asyncio.get_running_loop()

result = await loop.run_in_executor(global_thread_pool,
_get_cached_logits_processor, guide,
tokenizer, mode,
request.guided_whitespace_pattern)

logits_processor = copy(result)
# reset logits processor's internal state
logits_processor.init_state()
return logits_processor
return await loop.run_in_executor(global_thread_pool,
_get_logits_processor, guide, tokenizer,
mode, request.guided_whitespace_pattern)


def _get_guide_and_mode(
Expand Down Expand Up @@ -115,11 +109,10 @@ def _get_guide_and_mode(
return None, None


@lru_cache(maxsize=32)
def _get_cached_logits_processor(guide: str,
tokenizer: PreTrainedTokenizerBase,
mode: GuidedDecodingMode,
whitespace_pattern: Union[str, None]):
def _get_logits_processor(
guide: str, tokenizer: PreTrainedTokenizerBase, mode: GuidedDecodingMode,
whitespace_pattern: Union[str, None]
) -> Union[JSONLogitsProcessor, RegexLogitsProcessor, CFGLogitsProcessor]:
if mode == GuidedDecodingMode.JSON:
return JSONLogitsProcessor(guide, tokenizer, whitespace_pattern)
elif mode == GuidedDecodingMode.REGEX or mode == GuidedDecodingMode.CHOICE:
Expand Down
61 changes: 35 additions & 26 deletions vllm/model_executor/guided_decoding/outlines_logits_processors.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,36 +21,40 @@
from typing import Callable, DefaultDict, Dict, List, Union

import torch
from outlines.fsm.fsm import CFGFSM, FSM, RegexFSM
from outlines.fsm.guide import CFGGuide, Generate, Guide, RegexGuide, Write
from outlines.fsm.json_schema import build_regex_from_schema
from pydantic import BaseModel
from transformers import PreTrainedTokenizerBase


class BaseLogitsProcessor:

def __init__(self):
# Child class should use initialize in their init.
self.fsm: FSM

def init_state(self):
"""Initialize the FSM states."""
self.fsm_state: DefaultDict[int, int] = defaultdict(int)
def __init__(self, guide: Guide):
self._guide: Guide = guide
self._fsm_state: DefaultDict[int, int] = defaultdict(int)

def __call__(self, input_ids: List[int],
scores: torch.Tensor) -> torch.Tensor:
"""Use the FSM to bias the logits before sampling the next token."""
seq_id = hash(tuple(input_ids))

if len(input_ids) == 0:
self.init_state()
else:
if len(input_ids) > 0:
last_token = input_ids[-1]
last_seq_id = hash(tuple(input_ids[:-1]))
self.fsm_state[seq_id] = self.fsm.next_state(
self.fsm_state[last_seq_id], last_token)
self._fsm_state[seq_id] = self._guide.get_next_state(
state=self._fsm_state[last_seq_id], token_id=last_token)

instruction = self._guide.get_next_instruction(
state=self._fsm_state[seq_id])

allowed_tokens = self.fsm.allowed_token_ids(self.fsm_state[seq_id])
if type(instruction) == Generate:
allowed_tokens = instruction.tokens
elif type(instruction) == Write:
# TODO: support fast forward tokens
allowed_tokens = [instruction.tokens[0]]
br3no marked this conversation as resolved.
Show resolved Hide resolved
else:
raise TypeError(
f"Unsupported instruction type {type(instruction)}")

mask = torch.full((scores.shape[-1], ),
-math.inf,
Expand All @@ -62,6 +66,13 @@ def __call__(self, input_ids: List[int],

class RegexLogitsProcessor(BaseLogitsProcessor):

@classmethod
@lru_cache(maxsize=32)
def _get_guide(cls, regex_string: str,
tokenizer: PreTrainedTokenizerBase) -> Guide:
tokenizer = _adapt_tokenizer(tokenizer)
return RegexGuide(regex_string, tokenizer)

def __init__(self, regex_string: str, tokenizer: PreTrainedTokenizerBase):
"""Compile the FSM that drives the regex-structured generation.

Expand All @@ -73,9 +84,8 @@ def __init__(self, regex_string: str, tokenizer: PreTrainedTokenizerBase):
The model's tokenizer

"""
tokenizer = _adapt_tokenizer(tokenizer)
fsm = RegexFSM(regex_string, tokenizer)
self.fsm = fsm
super().__init__(
RegexLogitsProcessor._get_guide(regex_string, tokenizer))


class JSONLogitsProcessor(RegexLogitsProcessor):
Expand Down Expand Up @@ -115,6 +125,12 @@ def __init__(self, schema: Union[str, Dict, BaseModel],

class CFGLogitsProcessor(BaseLogitsProcessor):

@classmethod
@lru_cache(maxsize=32)
def _get_guide(cls, cfg: str, tokenizer: PreTrainedTokenizerBase) -> Guide:
tokenizer = _adapt_tokenizer(tokenizer)
return CFGGuide(cfg, tokenizer)

def __init__(self, cfg: str, tokenizer: PreTrainedTokenizerBase):
"""Compile the FSM that drives the context free grammar generation.

Expand All @@ -126,17 +142,10 @@ def __init__(self, cfg: str, tokenizer: PreTrainedTokenizerBase):
The model's tokenizer

"""
tokenizer = _adapt_tokenizer(tokenizer)
fsm = CFGFSM(cfg, tokenizer)
self.fsm = fsm

def init_state(self):
"""Initialize state with a CFGFSM copy."""
super().init_state()
self.fsm = self.fsm.copy()
super().__init__(CFGLogitsProcessor._get_guide(cfg, tokenizer))


@lru_cache
@lru_cache(maxsize=32)
def _adapt_tokenizer(tokenizer: PreTrainedTokenizerBase):
"""Adapt vLLM's tokenizer to use to compile the FSM.

Expand Down
Loading