Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Model] Adding Granite model. #7436

Merged
merged 17 commits into from
Sep 2, 2024
49 changes: 49 additions & 0 deletions tests/models/test_granite.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,49 @@
"""Compare the outputs of HF and vLLM for Granite models using greedy sampling.
Run `pytest tests/models/test_granite.py`.
"""
import importlib.metadata

import pytest

from .utils import check_logprobs_close

TRANSFORMERS_VERSION = tuple(
map(int,
importlib.metadata.version("transformers").split(".")))

MODELS = [
"ibm/PowerLM-3b",
]


# GraniteForCausalLM will be in transformers >= 4.45
@pytest.mark.skipif(TRANSFORMERS_VERSION < (4, 45),
reason="granite model test requires transformers >= 4.45")
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["bfloat16"])
@pytest.mark.parametrize("max_tokens", [64])
@pytest.mark.parametrize("num_logprobs", [5])
def test_models(
hf_runner,
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
num_logprobs: int,
) -> None:
# TODO(sang): Sliding window should be tested separately.
with hf_runner(model, dtype=dtype) as hf_model:
hf_outputs = hf_model.generate_greedy_logprobs_limit(
example_prompts, max_tokens, num_logprobs)

with vllm_runner(model, dtype=dtype) as vllm_model:
vllm_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, num_logprobs)
check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)
1 change: 1 addition & 0 deletions vllm/model_executor/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,7 @@
"EAGLEModel": ("eagle", "EAGLE"),
"MLPSpeculatorPreTrainedModel": ("mlp_speculator", "MLPSpeculator"),
"JambaForCausalLM": ("jamba", "JambaForCausalLM"),
"GraniteForCausalLM": ("granite", "GraniteForCausalLM")
}

_EMBEDDING_MODELS = {
Expand Down
Loading
Loading