Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[MODEL] add Exaone model support #7819

Merged
merged 15 commits into from
Aug 30, 2024
Merged

Conversation

nayohan
Copy link
Contributor

@nayohan nayohan commented Aug 23, 2024

Recently, The new model exaone released. I would love to contribute the new model to vLLM as well.

In this PR, I have provided the implementation of EXAONE-3.0 model and add model configs.

BEFORE SUBMITTING, PLEASE READ THE CHECKLIST BELOW AND FILL IN THE DESCRIPTION ABOVE


PR Checklist (Click to Expand)

Thank you for your contribution to vLLM! Before submitting the pull request, please ensure the PR meets the following criteria. This helps vLLM maintain the code quality and improve the efficiency of the review process.

PR Title and Classification

Only specific types of PRs will be reviewed. The PR title is prefixed appropriately to indicate the type of change. Please use one of the following:

  • [Bugfix] for bug fixes.
  • [CI/Build] for build or continuous integration improvements.
  • [Doc] for documentation fixes and improvements.
  • [Model] for adding a new model or improving an existing model. Model name should appear in the title.
  • [Frontend] For changes on the vLLM frontend (e.g., OpenAI API server, LLM class, etc.)
  • [Kernel] for changes affecting CUDA kernels or other compute kernels.
  • [Core] for changes in the core vLLM logic (e.g., LLMEngine, AsyncLLMEngine, Scheduler, etc.)
  • [Hardware][Vendor] for hardware-specific changes. Vendor name should appear in the prefix (e.g., [Hardware][AMD]).
  • [Misc] for PRs that do not fit the above categories. Please use this sparingly.

Note: If the PR spans more than one category, please include all relevant prefixes.

Code Quality

The PR need to meet the following code quality standards:

  • We adhere to Google Python style guide and Google C++ style guide.
  • Pass all linter checks. Please use format.sh to format your code.
  • The code need to be well-documented to ensure future contributors can easily understand the code.
  • Include sufficient tests to ensure the project to stay correct and robust. This includes both unit tests and integration tests.
  • Please add documentation to docs/source/ if the PR modifies the user-facing behaviors of vLLM. It helps vLLM user understand and utilize the new features or changes.

Notes for Large Changes

Please keep the changes as concise as possible. For major architectural changes (>500 LOC excluding kernel/data/config/test), we would expect a GitHub issue (RFC) discussing the technical design and justification. Otherwise, we will tag it with rfc-required and might not go through the PR.

What to Expect for the Reviews

The goal of the vLLM team is to be a transparent reviewing machine. We would like to make the review process transparent and efficient and make sure no contributor feel confused or frustrated. However, the vLLM team is small, so we need to prioritize some PRs over others. Here is what you can expect from the review process:

  • After the PR is submitted, the PR will be assigned to a reviewer. Every reviewer will pick up the PRs based on their expertise and availability.
  • After the PR is assigned, the reviewer will provide status update every 2-3 days. If the PR is not reviewed within 7 days, please feel free to ping the reviewer or the vLLM team.
  • After the review, the reviewer will put an action-required label on the PR if there are changes required. The contributor should address the comments and ping the reviewer to re-review the PR.
  • Please respond to all comments within a reasonable time frame. If a comment isn't clear or you disagree with a suggestion, feel free to ask for clarification or discuss the suggestion.

Thank You

Finally, thank you for taking the time to read these guidelines and for your interest in contributing to vLLM. Your contributions make vLLM a great tool for everyone!

Copy link

👋 Hi! Thank you for contributing to the vLLM project.
Just a reminder: PRs would not trigger full CI run by default. Instead, it would only run fastcheck CI which consists a small and essential subset of CI tests to quickly catch errors. You can run other CI tests on top of default ones by unblocking the steps in your fast-check build on Buildkite UI.

Once the PR is approved and ready to go, please make sure to run full CI as it is required to merge (or just use auto-merge).

To run full CI, you can do one of these:

  • Comment /ready on the PR
  • Add ready label to the PR
  • Enable auto-merge.

🚀

@github-actions github-actions bot added the ready ONLY add when PR is ready to merge/full CI is needed label Aug 23, 2024
@shing100
Copy link
Contributor

#7236

@nayohan nayohan force-pushed the add_exaone branch 2 times, most recently from c857d59 to 449aa30 Compare August 28, 2024 01:54
@nayohan
Copy link
Contributor Author

nayohan commented Aug 28, 2024

Checked the ruff format and fixed the code.

@nayohan
Copy link
Contributor Author

nayohan commented Aug 28, 2024

Solve #7236

Summary of changes

  • Add ExaoneModel

    • vllm/model_executor/models/init.py
    • vllm/model_executor/models/exaone.py
  • Add ExaoneConfig

    • vllm/transformers_utils/config.py
    • vllm/transformers_utils/configs/init.py. (New)
    • vllm/transformers_utils/configs/exaone.py (New)

Test Result

Python 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from vllm import LLM, SamplingParams
WARNING 08-28 11:10:49 cuda.py:22] You are using a deprecated `pynvml` package. Please install `nvidia-ml-py` instead, and make sure to uninstall `pynvml`. When both of them are installed, `pynvml` will take precedence and cause errors. See https://pypi.org/project/pynvml for more information.
>>> model = LLM("LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct", download_dir="/data/project/yohan/98_model")
INFO 08-28 11:11:56 config.py:1610] Downcasting torch.float32 to torch.float16.
INFO 08-28 11:11:56 llm_engine.py:210] Initializing an LLM engine (v0.5.5) with config: model='LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct', speculative_config=None, tokenizer='LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, rope_scaling=None, rope_theta=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.float16, max_seq_len=4096, download_dir='/data/project/yohan/98_model', load_format=LoadFormat.AUTO, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=0, served_model_name=LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct, use_v2_block_manager=False, num_scheduler_steps=1, enable_prefix_caching=False, use_async_output_proc=True)
INFO 08-28 11:11:57 model_runner.py:906] Starting to load model LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct...
INFO 08-28 11:11:58 weight_utils.py:236] Using model weights format ['*.safetensors']
Loading safetensors checkpoint shards:   0% Completed | 0/7 [00:00<?, ?it/s]
Loading safetensors checkpoint shards:  14% Completed | 1/7 [00:02<00:13,  2.33s/it]
Loading safetensors checkpoint shards:  29% Completed | 2/7 [00:05<00:14,  2.85s/it]
Loading safetensors checkpoint shards:  43% Completed | 3/7 [00:08<00:12,  3.01s/it]
Loading safetensors checkpoint shards:  57% Completed | 4/7 [00:11<00:08,  2.98s/it]
Loading safetensors checkpoint shards:  71% Completed | 5/7 [00:14<00:06,  3.05s/it]
Loading safetensors checkpoint shards:  86% Completed | 6/7 [00:17<00:02,  2.97s/it]
Loading safetensors checkpoint shards: 100% Completed | 7/7 [00:18<00:00,  2.12s/it]
Loading safetensors checkpoint shards: 100% Completed | 7/7 [00:18<00:00,  2.58s/it]

INFO 08-28 11:12:16 model_runner.py:917] Loading model weights took 14.5640 GB
INFO 08-28 11:12:17 gpu_executor.py:121] # GPU blocks: 10030, # CPU blocks: 2048
INFO 08-28 11:12:20 model_runner.py:1212] Capturing the model for CUDA graphs. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI.
INFO 08-28 11:12:20 model_runner.py:1216] CUDA graphs can take additional 1~3 GiB memory per GPU. If you are running out of memory, consider decreasing `gpu_memory_utilization` or enforcing eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage.
INFO 08-28 11:12:29 model_runner.py:1331] Graph capturing finished in 9 secs.
>>> model.generate("Hello!")
Processed prompts: 100%|█████████████████████████████| 1/1 [00:00<00:00,  3.76it/s, est. speed input: 7.52 toks/s, output: 60.14 toks/s]
[RequestOutput(request_id=0, prompt='Hello!', prompt_token_ids=[33381, 362], encoder_prompt=None, encoder_prompt_token_ids=None, prompt_logprobs=None, outputs=[CompletionOutput(index=0, text=" It looks like you're interested in understanding the MMa MparamItem and", token_ids=array('l', [1533, 7589, 1664, 904, 368, 628, 9124, 666, 6835, 629, 13995, 426, 852, 23219, 9314, 686]), cumulative_logprob=None, logprobs=None, finish_reason=length, stop_reason=None)], finished=True, metrics=RequestMetrics(arrival_time=1724843556.9958072, last_token_time=1724843556.9958072, first_scheduled_time=1724843557.0000691, first_token_time=1724843557.0201893, time_in_queue=0.004261970520019531, finished_time=1724843557.2531652, scheduler_time=0.001150771975517273, model_forward_time=None, model_execute_time=None), lora_request=None)]

@nayohan
Copy link
Contributor Author

nayohan commented Aug 28, 2024

Here is benchmark result with A100 40GB * 2. (tensor-parallel-size 2)

git clone https://github.com/nayohan/vllm
cd vllm
pip install -e . 

# vllm 0.5.5+cu124   /data/project/yohan/01_project/vllm

python3 benchmark_throughput.py --model LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct --max_model_len 4096 --tensor-parallel-size 2 --gpu-memory-utilization 0.95 --dataset "ShareGPT_V3_unfiltered_cleaned_split.json" --output_json o
Throuhput benchmark result (Click to Expand)
python3 benchmark_throughput.py --model LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct --max_model_len 4096 --tensor-parallel-size 2 --gpu-memory-utilization 0.95 --dataset "ShareGPT_V3_unfiltered_cleaned_split.json" --output_json o
WARNING 08-28 10:31:54 cuda.py:22] You are using a deprecated `pynvml` package. Please install `nvidia-ml-py` instead, and make sure to uninstall `pynvml`. When both of them are installed, `pynvml` will take precedence and cause errors. See https://pypi.org/project/pynvml for more information.
Namespace(backend='vllm', dataset='ShareGPT_V3_unfiltered_cleaned_split.json', input_len=None, output_len=None, model='LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct', tokenizer=None, quantization=None, tensor_parallel_size=2, n=1, use_beam_search=False, num_prompts=1000, seed=0, hf_max_batch_size=None, trust_remote_code=False, max_model_len=4096, dtype='auto', gpu_memory_utilization=0.95, enforce_eager=False, kv_cache_dtype='auto', quantization_param_path=None, device='auto', num_scheduler_steps=1, use_v2_block_manager=False, enable_prefix_caching=False, enable_chunked_prefill=False, max_num_batched_tokens=None, download_dir='/data/project/yohan/98_model', output_json='o', distributed_executor_backend=None, load_format='auto')
Namespace(backend='vllm', dataset='ShareGPT_V3_unfiltered_cleaned_split.json', input_len=None, output_len=None, model='LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct', tokenizer='LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct', quantization=None, tensor_parallel_size=2, n=1, use_beam_search=False, num_prompts=1000, seed=0, hf_max_batch_size=None, trust_remote_code=False, max_model_len=4096, dtype='auto', gpu_memory_utilization=0.95, enforce_eager=False, kv_cache_dtype='auto', quantization_param_path=None, device='auto', num_scheduler_steps=1, use_v2_block_manager=False, enable_prefix_caching=False, enable_chunked_prefill=False, max_num_batched_tokens=None, download_dir='/data/project/yohan/98_model', output_json='o', distributed_executor_backend=None, load_format='auto')
INFO 08-28 10:32:03 config.py:1610] Downcasting torch.float32 to torch.float16.
INFO 08-28 10:32:03 config.py:864] Defaulting to use mp for distributed inference
INFO 08-28 10:32:03 llm_engine.py:210] Initializing an LLM engine (v0.5.5) with config: model='LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct', speculative_config=None, tokenizer='LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, rope_scaling=None, rope_theta=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.float16, max_seq_len=4096, download_dir='/data/project/yohan/98_model', load_format=LoadFormat.AUTO, tensor_parallel_size=2, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=None, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=0, served_model_name=LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct, use_v2_block_manager=False, num_scheduler_steps=1, enable_prefix_caching=False, use_async_output_proc=True)
WARNING 08-28 10:32:03 multiproc_gpu_executor.py:55] Reducing Torch parallelism from 255 threads to 1 to avoid unnecessary CPU contention. Set OMP_NUM_THREADS in the external environment to tune this value as needed.
INFO 08-28 10:32:03 custom_cache_manager.py:17] Setting Triton cache manager to: vllm.triton_utils.custom_cache_manager:CustomCacheManager
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
        - Avoid using `tokenizers` before the fork if possible
        - Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
(VllmWorkerProcess pid=2175918) INFO 08-28 10:32:04 multiproc_worker_utils.py:215] Worker ready; awaiting tasks
INFO 08-28 10:32:04 utils.py:976] Found nccl from library libnccl.so.2
(VllmWorkerProcess pid=2175918) INFO 08-28 10:32:04 utils.py:976] Found nccl from library libnccl.so.2
INFO 08-28 10:32:04 pynccl.py:63] vLLM is using nccl==2.20.5
(VllmWorkerProcess pid=2175918) INFO 08-28 10:32:04 pynccl.py:63] vLLM is using nccl==2.20.5
INFO 08-28 10:32:05 custom_all_reduce_utils.py:242] reading GPU P2P access cache from /root/.cache/vllm/gpu_p2p_access_cache_for_0,1.json
(VllmWorkerProcess pid=2175918) INFO 08-28 10:32:05 custom_all_reduce_utils.py:242] reading GPU P2P access cache from /root/.cache/vllm/gpu_p2p_access_cache_for_0,1.json
INFO 08-28 10:32:05 shm_broadcast.py:235] vLLM message queue communication handle: Handle(connect_ip='127.0.0.1', local_reader_ranks=[1], buffer=<vllm.distributed.device_communicators.shm_broadcast.ShmRingBuffer object at 0x7f33b56855d0>, local_subscribe_port=46443, remote_subscribe_port=None)
INFO 08-28 10:32:05 model_runner.py:906] Starting to load model LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct...
(VllmWorkerProcess pid=2175918) INFO 08-28 10:32:05 model_runner.py:906] Starting to load model LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct...
(VllmWorkerProcess pid=2175918) INFO 08-28 10:32:05 weight_utils.py:236] Using model weights format ['*.safetensors']
INFO 08-28 10:32:05 weight_utils.py:236] Using model weights format ['*.safetensors']
Loading safetensors checkpoint shards:   0% Completed | 0/7 [00:00<?, ?it/s]
Loading safetensors checkpoint shards:  14% Completed | 1/7 [00:05<00:34,  5.73s/it]
Loading safetensors checkpoint shards:  29% Completed | 2/7 [00:13<00:33,  6.66s/it]
Loading safetensors checkpoint shards:  43% Completed | 3/7 [00:20<00:27,  6.99s/it]
Loading safetensors checkpoint shards:  57% Completed | 4/7 [00:27<00:20,  6.89s/it]
Loading safetensors checkpoint shards:  71% Completed | 5/7 [00:34<00:13,  6.99s/it]
Loading safetensors checkpoint shards:  86% Completed | 6/7 [00:41<00:06,  7.00s/it]
Loading safetensors checkpoint shards: 100% Completed | 7/7 [00:42<00:00,  5.24s/it]
Loading safetensors checkpoint shards: 100% Completed | 7/7 [00:42<00:00,  6.14s/it]

INFO 08-28 10:32:49 model_runner.py:917] Loading model weights took 7.2827 GB
(VllmWorkerProcess pid=2175918) INFO 08-28 10:32:49 model_runner.py:917] Loading model weights took 7.2827 GB
INFO 08-28 10:32:50 distributed_gpu_executor.py:56] # GPU blocks: 29314, # CPU blocks: 4096
INFO 08-28 10:32:52 model_runner.py:1212] Capturing the model for CUDA graphs. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI.
INFO 08-28 10:32:52 model_runner.py:1216] CUDA graphs can take additional 1~3 GiB memory per GPU. If you are running out of memory, consider decreasing `gpu_memory_utilization` or enforcing eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage.
(VllmWorkerProcess pid=2175918) INFO 08-28 10:32:52 model_runner.py:1212] Capturing the model for CUDA graphs. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI.
(VllmWorkerProcess pid=2175918) INFO 08-28 10:32:52 model_runner.py:1216] CUDA graphs can take additional 1~3 GiB memory per GPU. If you are running out of memory, consider decreasing `gpu_memory_utilization` or enforcing eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage.
(VllmWorkerProcess pid=2175918) INFO 08-28 10:33:10 custom_all_reduce.py:223] Registering 2275 cuda graph addresses
INFO 08-28 10:33:10 custom_all_reduce.py:223] Registering 2275 cuda graph addresses
(VllmWorkerProcess pid=2175918) INFO 08-28 10:33:10 model_runner.py:1331] Graph capturing finished in 18 secs.
INFO 08-28 10:33:10 model_runner.py:1331] Graph capturing finished in 18 secs.
Processed prompts: 100%|████████████████| 1000/1000 [01:10<00:00, 14.12it/s, est. speed input: 3349.74 toks/s, output: 3108.96 toks/s]
Throughput: 13.87 requests/s, 6343.01 tokens/s

Throughput: 13.87 requests/s, 6343.01 tokens/s

@nayohan
Copy link
Contributor Author

nayohan commented Aug 28, 2024

Here is benchmark result with A100 40GB * 1. (--quantization fp8)

CUDA_VISIBLE_DEVICES=0 python3 benchmark_throughput.py --model LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct --max_model_len 4096 --tensor-parallel-size 1 --gpu-memory-utilization 0.95 --dataset "ShareGPT_V3_unfiltered_cleaned_split.json" --output_json o --quantization fp8
Throuhput benchmark result
CUDA_VISIBLE_DEVICES=0 python3 benchmark_throughput.py --model LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct --max_model_len 4096 --tensor-parallel-size 1 --gpu-memory-utilization 0.95 --dataset "ShareGPT_V3_unfiltered_cleaned_split.json" --output_json o --quantization fp8
 WARNING 08-28 10:47:22 cuda.py:22] You are using a deprecated `pynvml` package. Please install `nvidia-ml-py` instead, and make sure to uninstall `pynvml`. When both of them are installed, `pynvml` will take precedence and cause errors. See https://pypi.org/project/pynvml for more information.
Namespace(backend='vllm', dataset='ShareGPT_V3_unfiltered_cleaned_split.json', input_len=None, output_len=None, model='LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct', tokenizer=None, quantization='fp8', tensor_parallel_size=1, n=1, use_beam_search=False, num_prompts=1000, seed=0, hf_max_batch_size=None, trust_remote_code=False, max_model_len=4096, dtype='auto', gpu_memory_utilization=0.95, enforce_eager=False, kv_cache_dtype='auto', quantization_param_path=None, device='auto', num_scheduler_steps=1, use_v2_block_manager=False, enable_prefix_caching=False, enable_chunked_prefill=False, max_num_batched_tokens=None, download_dir='/data/project/yohan/98_model', output_json='o', distributed_executor_backend=None, load_format='auto')
Namespace(backend='vllm', dataset='ShareGPT_V3_unfiltered_cleaned_split.json', input_len=None, output_len=None, model='LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct', tokenizer='LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct', quantization='fp8', tensor_parallel_size=1, n=1, use_beam_search=False, num_prompts=1000, seed=0, hf_max_batch_size=None, trust_remote_code=False, max_model_len=4096, dtype='auto', gpu_memory_utilization=0.95, enforce_eager=False, kv_cache_dtype='auto', quantization_param_path=None, device='auto', num_scheduler_steps=1, use_v2_block_manager=False, enable_prefix_caching=False, enable_chunked_prefill=False, max_num_batched_tokens=None, download_dir='/data/project/yohan/98_model', output_json='o', distributed_executor_backend=None, load_format='auto')
INFO 08-28 10:47:30 config.py:1610] Downcasting torch.float32 to torch.float16.
INFO 08-28 10:47:30 llm_engine.py:210] Initializing an LLM engine (v0.5.5) with config: model='LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct', speculative_config=None, tokenizer='LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct', skip_tokenizer_init=False, tokenizer_mode=auto, revision=None, rope_scaling=None, rope_theta=None, tokenizer_revision=None, trust_remote_code=False, dtype=torch.float16, max_seq_len=4096, download_dir='/data/project/yohan/98_model', load_format=LoadFormat.AUTO, tensor_parallel_size=1, pipeline_parallel_size=1, disable_custom_all_reduce=False, quantization=fp8, enforce_eager=False, kv_cache_dtype=auto, quantization_param_path=None, device_config=cuda, decoding_config=DecodingConfig(guided_decoding_backend='outlines'), observability_config=ObservabilityConfig(otlp_traces_endpoint=None, collect_model_forward_time=False, collect_model_execute_time=False), seed=0, served_model_name=LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct, use_v2_block_manager=False, num_scheduler_steps=1, enable_prefix_caching=False, use_async_output_proc=True)
INFO 08-28 10:47:31 model_runner.py:906] Starting to load model LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct...
INFO 08-28 10:47:32 weight_utils.py:236] Using model weights format ['*.safetensors']
Loading safetensors checkpoint shards:   0% Completed | 0/7 [00:00<?, ?it/s]
Loading safetensors checkpoint shards:  14% Completed | 1/7 [00:02<00:14,  2.36s/it]
Loading safetensors checkpoint shards:  29% Completed | 2/7 [00:05<00:14,  2.92s/it]
Loading safetensors checkpoint shards:  43% Completed | 3/7 [00:09<00:12,  3.15s/it]
Loading safetensors checkpoint shards:  57% Completed | 4/7 [00:12<00:09,  3.16s/it]
Loading safetensors checkpoint shards:  71% Completed | 5/7 [00:15<00:06,  3.21s/it]
Loading safetensors checkpoint shards:  86% Completed | 6/7 [00:18<00:03,  3.18s/it]
Loading safetensors checkpoint shards: 100% Completed | 7/7 [00:19<00:00,  2.29s/it]
Loading safetensors checkpoint shards: 100% Completed | 7/7 [00:19<00:00,  2.74s/it]

WARNING 08-28 10:47:51 utils.py:722] Your GPU does not have native support for FP8 computation but FP8 quantization is being used. Weight-only FP8 compression will be used leveraging the Marlin kernel. This may degrade performance for compute-heavy workloads.
INFO 08-28 10:47:52 model_runner.py:917] Loading model weights took 8.0678 GB
INFO 08-28 10:47:53 gpu_executor.py:121] # GPU blocks: 14181, # CPU blocks: 2048
INFO 08-28 10:47:55 model_runner.py:1212] Capturing the model for CUDA graphs. This may lead to unexpected consequences if the model is not static. To run the model in eager mode, set 'enforce_eager=True' or use '--enforce-eager' in the CLI.
INFO 08-28 10:47:55 model_runner.py:1216] CUDA graphs can take additional 1~3 GiB memory per GPU. If you are running out of memory, consider decreasing `gpu_memory_utilization` or enforcing eager mode. You can also reduce the `max_num_seqs` as needed to decrease memory usage.
INFO 08-28 10:48:06 model_runner.py:1331] Graph capturing finished in 11 secs.
Processed prompts: 100%|██████████████████| 1000/1000 [01:18<00:00, 12.71it/s, est. speed input: 3014.60 toks/s, output: 2797.91 toks/s]
Throughput: 12.60 requests/s, 5765.20 tokens/s

Throughput: 12.60 requests/s, 5765.20 tokens/s

@nayohan
Copy link
Contributor Author

nayohan commented Aug 28, 2024

I checked the other PR (#6611 , #7615 ) to add and added the code.
After completing all the work, I tested it in multi-gpu environment and quantization.

please let me know if there is anything missing that should be added. I'll update it. @mgoin @simon-mo

@nayohan
Copy link
Contributor Author

nayohan commented Aug 28, 2024

/ready

Copy link
Member

@mgoin mgoin left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm not sure what to "choose" between this and the other PR #7942, but this one does have the README update and also gets a good accuracy score, so I am accepting this one.

lm_eval --model vllm --model_args pretrained=LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct,max_model_len=4096,enable_chunked_prefill=True --tasks gsm8k --batch_size auto
vllm (pretrained=LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct,max_model_len=4096,enable_chunked_prefill=True), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: auto
|Tasks|Version|     Filter     |n-shot|  Metric   |   |Value |   |Stderr|
|-----|------:|----------------|-----:|-----------|---|-----:|---|-----:|
|gsm8k|      3|flexible-extract|     5|exact_match|↑  |0.8044|±  |0.0109|
|     |       |strict-match    |     5|exact_match|↑  |0.8021|±  |0.0110|

@simon-mo
Copy link
Collaborator

Sorry before we merge, a common question we ask is how is this different from llama implementation, and why can't the existing llama implementation run it. For example, we have Mistral, InternLMForCausalLM, and AquilaForCausalLM all mapped directly to llama.py

@nayohan
Copy link
Contributor Author

nayohan commented Aug 29, 2024

Thank you for accepting this PR!

I'll add to @Deepfocused's partial answer to your question and explain the whole change. (#7942 (comment))

The Exaone3 model is Llama based code, but when it pre-trained the model from scratch, it changed the tokenizer and changed some model configs such as keys and values.

The changes are as follows:

  1. model State_dict key changed. Compared to llama3, there are some key changes for each layer.
model.embed_tokens.weight -> transformer.wte.weight
model.layers.0.input_layernorm.weight -> transformer.h.0.ln_1.weight
model.layers.0.self_attn.o_proj.weight -> transformer.h.0.attn.attention.out_proj.weight 
model.layers.0.mlp.gate_proj.weight -> transformer.h.0.mlp.c_fc_0.weight
model.layers.0.mlp.up_proj.weight -> transformer.h.0.mlp.c_fc_1.weight
model.layers.0.mlp.down_proj.weight -> transformer.h.0.mlp.c_proj.weight
model.layers.0.post_attention_layernorm.weight -> transformer.h.0.ln_2.weight
model.norm.weight -> transformer.ln_f.weight
  1. model config key changed. There are some key changes in other parts.
hidden_act -> activation_function
num_hidden_layers -> num_layers	
rms_norm_eps -> layer_norm_epsilon

These two differences make it unlikely that a directly mapping to llama.py would be applicable. If there is another way to map it, please leave a reference PR. I'll update the code.

(While off-topic, It's nice to have a convenient way to evaluate performance using lm_eval. If I do a new model PR in the future, I will include performance evaluation results. Thanks for letting me know!)

@simon-mo simon-mo merged commit dc13e99 into vllm-project:main Aug 30, 2024
36 checks passed
@DarkLight1337
Copy link
Member

DarkLight1337 commented Aug 30, 2024

There appears to be some incompatibilities between the HF model file and the current version of vLLM. It is causing the CI to fail.

Update: It's just the modeling file inside vLLM that's broken. I'll open a PR to fix it.

dsikka pushed a commit to neuralmagic/nm-vllm that referenced this pull request Aug 31, 2024
triple-Mu pushed a commit to triple-Mu/vllm_official that referenced this pull request Sep 4, 2024
dsikka pushed a commit to neuralmagic/vllm that referenced this pull request Sep 5, 2024
opus24 added a commit to Hyper-Accel/vllm that referenced this pull request Sep 10, 2024
commit a1d8742
Author: Simon Mo <simon.mo@hey.com>
Date:   Mon Sep 9 23:21:00 2024 -0700

    Add NVIDIA Meetup slides, announce AMD meetup, and add contact info (vllm-project#8319)

commit 6cd5e5b
Author: Dipika Sikka <dipikasikka1@gmail.com>
Date:   Mon Sep 9 23:02:52 2024 -0400

    [Misc] Fused MoE Marlin support for GPTQ (vllm-project#8217)

commit c7cb5c3
Author: Kyle Sayers <kylesayrs@gmail.com>
Date:   Mon Sep 9 16:27:26 2024 -0400

    [Misc] GPTQ Activation Ordering (vllm-project#8135)

commit f9b4a2d
Author: Vladislav Kruglikov <vladislavkruglikov@outlook.com>
Date:   Mon Sep 9 21:20:46 2024 +0300

    [Bugfix] Correct adapter usage for cohere and jamba (vllm-project#8292)

commit 58fcc85
Author: Adam Lugowski <alugowski@gmail.com>
Date:   Mon Sep 9 11:16:37 2024 -0700

    [Frontend] Add progress reporting to run_batch.py (vllm-project#8060)

    Co-authored-by: Adam Lugowski <adam.lugowski@parasail.io>

commit 08287ef
Author: Kyle Mistele <kyle@mistele.com>
Date:   Mon Sep 9 09:45:11 2024 -0500

    [Bugfix] Streamed tool calls now more strictly follow OpenAI's format; ensures Vercel AI SDK compatibility (vllm-project#8272)

commit 4ef41b8
Author: Alexander Matveev <59768536+alexm-neuralmagic@users.noreply.github.com>
Date:   Sun Sep 8 00:01:51 2024 -0400

    [Bugfix] Fix async postprocessor in case of preemption (vllm-project#8267)

commit cfe712b
Author: Joe Runde <Joseph.Runde@ibm.com>
Date:   Sat Sep 7 14:03:16 2024 -0600

    [CI/Build] Use python 3.12 in cuda image (vllm-project#8133)

    Signed-off-by: Joe Runde <Joseph.Runde@ibm.com>

commit b962ee1
Author: sumitd2 <91451282+sumitd2@users.noreply.github.com>
Date:   Sat Sep 7 23:48:40 2024 +0530

    ppc64le: Dockerfile fixed, and a script for buildkite (vllm-project#8026)

commit 36bf815
Author: Isotr0py <2037008807@qq.com>
Date:   Sun Sep 8 01:45:44 2024 +0800

    [Model][VLM] Decouple weight loading logic for `Paligemma` (vllm-project#8269)

commit e807125
Author: Isotr0py <2037008807@qq.com>
Date:   Sat Sep 7 16:38:23 2024 +0800

    [Model][VLM] Support multi-images inputs for InternVL2 models (vllm-project#8201)

commit 9f68e00
Author: Cyrus Leung <tlleungac@connect.ust.hk>
Date:   Sat Sep 7 16:02:39 2024 +0800

    [Bugfix] Fix broken OpenAI tensorizer test (vllm-project#8258)

commit ce2702a
Author: youkaichao <youkaichao@gmail.com>
Date:   Fri Sep 6 22:40:46 2024 -0700

    [tpu][misc] fix typo (vllm-project#8260)

commit 795b662
Author: Wei-Sheng Chin <wschin@outlook.com>
Date:   Fri Sep 6 20:18:16 2024 -0700

    Enable Random Prefix Caching in Serving Profiling Tool (benchmark_serving.py) (vllm-project#8241)

commit 2f707fc
Author: Cyrus Leung <tlleungac@connect.ust.hk>
Date:   Sat Sep 7 10:57:24 2024 +0800

    [Model] Multi-input support for LLaVA (vllm-project#8238)

commit 41e95c5
Author: Kyle Mistele <kyle@mistele.com>
Date:   Fri Sep 6 21:49:01 2024 -0500

    [Bugfix] Fix Hermes tool call chat template bug (vllm-project#8256)

    Co-authored-by: Kyle Mistele <kyle@constellate.ai>

commit 12dd715
Author: William Lin <SolitaryThinker@users.noreply.github.com>
Date:   Fri Sep 6 17:48:48 2024 -0700

    [misc] [doc] [frontend] LLM torch profiler support (vllm-project#7943)

commit 29f49cd
Author: Patrick von Platen <patrick.v.platen@gmail.com>
Date:   Sat Sep 7 01:02:05 2024 +0200

    [Model] Allow loading from original Mistral format (vllm-project#8168)

    Co-authored-by: Michael Goin <michael@neuralmagic.com>

commit 23f3222
Author: Dipika Sikka <dipikasikka1@gmail.com>
Date:   Fri Sep 6 18:29:03 2024 -0400

    [Misc] Remove `SqueezeLLM` (vllm-project#8220)

commit 9db52ea
Author: rasmith <Randall.Smith@amd.com>
Date:   Fri Sep 6 17:26:09 2024 -0500

    [Kernel] [Triton] Memory optimization for awq_gemm and awq_dequantize, 2x throughput (vllm-project#8248)

commit 1447c97
Author: Alexey Kondratiev(AMD) <143633163+alexeykondrat@users.noreply.github.com>
Date:   Fri Sep 6 14:51:03 2024 -0400

    [CI/Build] Increasing timeout for multiproc worker tests (vllm-project#8203)

commit de80783
Author: Rui Qiao <161574667+ruisearch42@users.noreply.github.com>
Date:   Fri Sep 6 09:18:35 2024 -0700

    [Misc] Use ray[adag] dependency instead of cuda (vllm-project#7938)

commit e5cab71
Author: afeldman-nm <156691304+afeldman-nm@users.noreply.github.com>
Date:   Fri Sep 6 12:01:14 2024 -0400

    [Frontend] Add --logprobs argument to `benchmark_serving.py` (vllm-project#8191)

commit baa5467
Author: Nick Hill <nickhill@us.ibm.com>
Date:   Thu Sep 5 20:39:29 2024 -0700

    [BugFix] Fix Granite model configuration (vllm-project#8216)

commit db3bf7c
Author: Jiaxin Shan <seedjeffwan@gmail.com>
Date:   Thu Sep 5 18:10:33 2024 -0700

    [Core] Support load and unload LoRA in api server (vllm-project#6566)

    Co-authored-by: Jee Jee Li <pandaleefree@gmail.com>

commit 2febcf2
Author: sroy745 <142070531+sroy745@users.noreply.github.com>
Date:   Thu Sep 5 13:25:29 2024 -0700

    [Documentation][Spec Decode] Add documentation about lossless guarantees in Speculative Decoding in vLLM (vllm-project#7962)

commit 2ee4528
Author: Michael Goin <michael@neuralmagic.com>
Date:   Thu Sep 5 11:09:46 2024 -0400

    Move verify_marlin_supported to GPTQMarlinLinearMethod (vllm-project#8165)

commit 9da25a8
Author: Alex Brooks <alex.brooks@ibm.com>
Date:   Thu Sep 5 06:48:10 2024 -0600

    [MODEL] Qwen Multimodal Support (Qwen-VL / Qwen-VL-Chat) (vllm-project#8029)

    Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
    Co-authored-by: DarkLight1337 <tlleungac@connect.ust.hk>

commit 8685ba1
Author: manikandan.tm@zucisystems.com <94887255+Manikandan-Thangaraj-ZS0321@users.noreply.github.com>
Date:   Thu Sep 5 17:03:37 2024 +0530

    Inclusion of InternVLChatModel In PP_SUPPORTED_MODELS(Pipeline Parallelism) (vllm-project#7860)

commit 288a938
Author: Cyrus Leung <tlleungac@connect.ust.hk>
Date:   Thu Sep 5 18:51:53 2024 +0800

    [Doc] Indicate more information about supported modalities (vllm-project#8181)

commit e39ebf5
Author: Elfie Guo <164945471+elfiegg@users.noreply.github.com>
Date:   Wed Sep 4 22:12:26 2024 -0700

    [Core/Bugfix] Add query dtype as per FlashInfer API requirements. (vllm-project#8173)

commit ba262c4
Author: Kevin H. Luu <kevin@anyscale.com>
Date:   Wed Sep 4 20:33:12 2024 -0700

    [ci] Mark LoRA test as soft-fail (vllm-project#8160)

    Signed-off-by: kevin <kevin@anyscale.com>

commit 4624d98
Author: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Date:   Wed Sep 4 20:31:48 2024 -0700

    [Misc] Clean up RoPE forward_native (vllm-project#8076)

commit 1afc931
Author: William Lin <SolitaryThinker@users.noreply.github.com>
Date:   Wed Sep 4 17:35:36 2024 -0700

    [bugfix] >1.43 constraint for openai (vllm-project#8169)

    Co-authored-by: Michael Goin <michael@neuralmagic.com>

commit e01c2be
Author: Maureen McElaney <mmcelaney@users.noreply.github.com>
Date:   Wed Sep 4 19:50:13 2024 -0400

    [Doc] [Misc] Create CODE_OF_CONDUCT.md (vllm-project#8161)

commit 32e7db2
Author: Simon Mo <simon.mo@hey.com>
Date:   Wed Sep 4 16:34:27 2024 -0700

    Bump version to v0.6.0 (vllm-project#8166)

commit 008cf88
Author: Harsha vardhan manoj Bikki <39381063+hbikki@users.noreply.github.com>
Date:   Wed Sep 4 16:33:43 2024 -0700

    [Neuron] Adding support for adding/ overriding neuron configuration a… (vllm-project#8062)

    Co-authored-by: Harsha Bikki <harbikh@amazon.com>

commit 77d9e51
Author: Cody Yu <hao.yu.cody@gmail.com>
Date:   Wed Sep 4 13:23:22 2024 -0700

    [MISC] Replace input token throughput with total token throughput (vllm-project#8164)

    Co-authored-by: Michael Goin <michael@neuralmagic.com>

commit e02ce49
Author: Kyle Mistele <kyle@mistele.com>
Date:   Wed Sep 4 15:18:13 2024 -0500

    [Feature] OpenAI-Compatible Tools API + Streaming for Hermes & Mistral models (vllm-project#5649)

    Co-authored-by: constellate <constellate@1-ai-appserver-staging.codereach.com>
    Co-authored-by: Kyle Mistele <kyle@constellate.ai>

commit 561d6f8
Author: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Date:   Wed Sep 4 13:05:50 2024 -0700

    [CI] Change test input in Gemma LoRA test (vllm-project#8163)

commit d1dec64
Author: alexeykondrat <143633163+alexeykondrat@users.noreply.github.com>
Date:   Wed Sep 4 14:57:54 2024 -0400

    [CI/Build][ROCm] Enabling LoRA tests on ROCm (vllm-project#7369)

    Co-authored-by: Simon Mo <simon.mo@hey.com>

commit 2ad2e56
Author: Cody Yu <hao.yu.cody@gmail.com>
Date:   Wed Sep 4 11:53:25 2024 -0700

    [MISC] Consolidate FP8 kv-cache tests (vllm-project#8131)

commit d331156
Author: wnma <wnma3mz@gmail.com>
Date:   Wed Sep 4 18:55:37 2024 +0800

    [Bugfix] remove post_layernorm in siglip (vllm-project#8106)

commit ccd7207
Author: TimWang <7367474+haitwang-cloud@users.noreply.github.com>
Date:   Wed Sep 4 14:17:05 2024 +0800

    chore: Update check-wheel-size.py to read MAX_SIZE_MB from env (vllm-project#8103)

commit 855c262
Author: Cyrus Leung <tlleungac@connect.ust.hk>
Date:   Wed Sep 4 13:22:17 2024 +0800

    [Frontend] Multimodal support in offline chat (vllm-project#8098)

commit 2be8ec6
Author: Peter Salas <peter@fixie.ai>
Date:   Tue Sep 3 21:38:21 2024 -0700

    [Model] Add Ultravox support for multiple audio chunks (vllm-project#7963)

commit e16fa99
Author: Dipika Sikka <dipikasikka1@gmail.com>
Date:   Tue Sep 3 22:12:41 2024 -0400

    [Misc] Update fbgemmfp8 to use `vLLMParameters` (vllm-project#7972)

    Co-authored-by: Michael Goin <michael@neuralmagic.com>

commit 61f4a93
Author: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Date:   Tue Sep 3 18:35:33 2024 -0700

    [TPU][Bugfix] Use XLA rank for persistent cache path (vllm-project#8137)

commit d4db9f5
Author: Nick Hill <nickhill@us.ibm.com>
Date:   Tue Sep 3 17:57:41 2024 -0700

    [Benchmark] Add `--async-engine` option to benchmark_throughput.py (vllm-project#7964)

commit 2188a60
Author: Dipika Sikka <dipikasikka1@gmail.com>
Date:   Tue Sep 3 17:21:44 2024 -0400

    [Misc] Update `GPTQ` to use `vLLMParameters` (vllm-project#7976)

commit dc0b606
Author: Simon Mo <simon.mo@hey.com>
Date:   Tue Sep 3 14:11:42 2024 -0700

    [CI] Change PR remainder to avoid at-mentions (vllm-project#8134)

commit 0af3abe
Author: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Date:   Tue Sep 3 13:29:24 2024 -0700

    [TPU][Bugfix] Fix next_token_ids shape (vllm-project#8128)

commit f1575dc
Author: Kevin H. Luu <kevin@anyscale.com>
Date:   Tue Sep 3 13:25:09 2024 -0700

    [ci] Fix GHA workflow  (vllm-project#8129)

    Signed-off-by: kevin <kevin@anyscale.com>

commit c02638e
Author: tomeras91 <57313761+tomeras91@users.noreply.github.com>
Date:   Tue Sep 3 22:37:08 2024 +0300

    [CI/Build] make pip install vllm work in macos (for import only) (vllm-project#8118)

commit 652c83b
Author: Antoni Baum <antoni.baum@protonmail.com>
Date:   Tue Sep 3 12:28:25 2024 -0700

    [Misc] Raise a more informative exception in add/remove_logger (vllm-project#7750)

commit 6d646d0
Author: Alexander Matveev <59768536+alexm-neuralmagic@users.noreply.github.com>
Date:   Tue Sep 3 14:50:29 2024 -0400

    [Core] Optimize Async + Multi-step (vllm-project#8050)

commit 95a178f
Author: Kevin H. Luu <kevin@anyscale.com>
Date:   Tue Sep 3 11:32:27 2024 -0700

    [CI] Only PR reviewers/committers can trigger CI on PR (vllm-project#8124)

    Signed-off-by: kevin <kevin@anyscale.com>

commit bd852f2
Author: Cody Yu <hao.yu.cody@gmail.com>
Date:   Tue Sep 3 10:49:18 2024 -0700

    [Performance] Enable chunked prefill and prefix caching together (vllm-project#8120)

    Co-authored-by: Tao He <sighingnow@gmail.com>
    Co-authored-by: Juelianqvq <Juelianqvq@noreply.github.com>

commit ec26653
Author: Isotr0py <2037008807@qq.com>
Date:   Tue Sep 3 21:37:52 2024 +0800

    [Bugfix][VLM] Add fallback to SDPA for ViT model running on CPU backend (vllm-project#8061)

commit 0fbc669
Author: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Date:   Mon Sep 2 20:35:42 2024 -0700

    [Bugfix] Fix single output condition in output processor (vllm-project#7881)

commit 6e36f4f
Author: wang.yuqi <noooop@126.com>
Date:   Tue Sep 3 05:20:12 2024 +0800

    improve chunked prefill performance

    [Bugfix] Fix vllm-project#7592 vllm 0.5.4 enable_chunked_prefill throughput is slightly lower than 0.5.3~0.5.0. (vllm-project#7874)

commit dd2a6a8
Author: Isotr0py <2037008807@qq.com>
Date:   Mon Sep 2 23:48:56 2024 +0800

    [Bugfix] Fix internlm2 tensor parallel inference (vllm-project#8055)

commit 4ca65a9
Author: Isotr0py <2037008807@qq.com>
Date:   Mon Sep 2 20:43:26 2024 +0800

    [Core][Bugfix] Accept GGUF model without .gguf extension (vllm-project#8056)

commit e2b2aa5
Author: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Date:   Sun Sep 1 23:09:46 2024 -0700

    [TPU] Align worker index with node boundary (vllm-project#7932)

commit e6a26ed
Author: Lily Liu <lilyliupku@gmail.com>
Date:   Sun Sep 1 21:23:29 2024 -0700

    [SpecDecode][Kernel] Flashinfer Rejection Sampling (vllm-project#7244)

commit f8d6014
Author: Shawn Tan <shawn@wtf.sg>
Date:   Sun Sep 1 21:37:18 2024 -0400

    [Model] Add Granite model (vllm-project#7436)

    Co-authored-by: Nick Hill <nickhill@us.ibm.com>

commit 5b86b19
Author: Roger Wang <136131678+ywang96@users.noreply.github.com>
Date:   Sun Sep 1 14:46:57 2024 -0700

    [Misc] Optional installation of audio related packages (vllm-project#8063)

commit 5231f08
Author: Roger Wang <136131678+ywang96@users.noreply.github.com>
Date:   Sat Aug 31 16:35:53 2024 -0700

    [Frontend][VLM] Add support for multiple multi-modal items (vllm-project#8049)

commit 8423aef
Author: Robert Shaw <114415538+robertgshaw2-neuralmagic@users.noreply.github.com>
Date:   Sat Aug 31 15:44:03 2024 -0400

    [BugFix][Core] Multistep Fix Crash on Request Cancellation (vllm-project#8059)

commit 4f5d844
Author: Nicolò Lucchesi <nicolo.lucchesi@gmail.com>
Date:   Sat Aug 31 09:27:58 2024 +0200

    [Bugfix] Fix ModelScope models in v0.5.5 (vllm-project#8037)

commit d05f0a9
Author: Cyrus Leung <tlleungac@connect.ust.hk>
Date:   Sat Aug 31 13:26:55 2024 +0800

    [Bugfix] Fix import error in Phi-3.5-MoE (vllm-project#8052)

commit 622f8ab
Author: Pavani Majety <pmajety@nvidia.com>
Date:   Fri Aug 30 22:18:50 2024 -0700

    [Bugfix] bugfix and add model test for flashinfer fp8 kv cache. (vllm-project#8013)

commit 1248e85
Author: Wenxiang <8460860+wenxcs@users.noreply.github.com>
Date:   Sat Aug 31 03:42:57 2024 +0800

    [Model] Adding support for MSFT Phi-3.5-MoE (vllm-project#7729)

    Co-authored-by: Your Name <you@example.com>
    Co-authored-by: Zeqi Lin <zelin@microsoft.com>
    Co-authored-by: Zeqi Lin <Zeqi.Lin@microsoft.com>

commit 2684efc
Author: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Date:   Fri Aug 30 09:01:26 2024 -0700

    [TPU][Bugfix] Fix tpu type api (vllm-project#8035)

commit 058344f
Author: Kaunil Dhruv <dhruv.kaunil@gmail.com>
Date:   Fri Aug 30 08:21:02 2024 -0700

    [Frontend]-config-cli-args (vllm-project#7737)

    Co-authored-by: Cyrus Leung <cyrus.tl.leung@gmail.com>
    Co-authored-by: Kaunil Dhruv <kaunil_dhruv@intuit.com>

commit 98cef6a
Author: Cyrus Leung <tlleungac@connect.ust.hk>
Date:   Fri Aug 30 23:20:34 2024 +0800

    [Core] Increase default `max_num_batched_tokens` for multimodal models (vllm-project#8028)

commit f97be32
Author: Jungho Christopher Cho <wjdgh6655@gmail.com>
Date:   Sat Aug 31 00:19:27 2024 +0900

    [VLM][Model] TP support for ViTs (vllm-project#7186)

    Co-authored-by: Roger Wang <136131678+ywang96@users.noreply.github.com>
    Co-authored-by: Roger Wang <ywang@roblox.com>

commit afd39a4
Author: Cyrus Leung <tlleungac@connect.ust.hk>
Date:   Fri Aug 30 23:03:28 2024 +0800

    [Bugfix] Fix import error in Exaone model (vllm-project#8034)

commit 2148441
Author: Richard Liu <39319471+richardsliu@users.noreply.github.com>
Date:   Fri Aug 30 00:27:40 2024 -0700

    [TPU] Support single and multi-host TPUs on GKE (vllm-project#7613)

commit dc13e99
Author: Yohan Na <nayohan13@gmail.com>
Date:   Fri Aug 30 15:34:20 2024 +0900

    [MODEL] add Exaone model support (vllm-project#7819)

commit 34a0e96
Author: Avshalom Manevich <12231371+avshalomman@users.noreply.github.com>
Date:   Fri Aug 30 11:11:39 2024 +0700

    [Kernel] changing fused moe kernel chunk size default to 32k (vllm-project#7995)

commit 80c7b08
Author: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Date:   Thu Aug 29 19:35:29 2024 -0700

    [TPU] Async output processing for TPU (vllm-project#8011)

commit 428dd14
Author: afeldman-nm <156691304+afeldman-nm@users.noreply.github.com>
Date:   Thu Aug 29 22:19:08 2024 -0400

    [Core] Logprobs support in Multi-step (vllm-project#7652)

commit 4abed65
Author: Cyrus Leung <tlleungac@connect.ust.hk>
Date:   Fri Aug 30 08:49:04 2024 +0800

    [VLM] Disallow overflowing `max_model_len` for multimodal models (vllm-project#7998)

commit 0c785d3
Author: Wei-Sheng Chin <wechi@microsoft.com>
Date:   Thu Aug 29 16:48:11 2024 -0700

    Add more percentiles and latencies (vllm-project#7759)

commit 4664cea
Author: chenqianfzh <51831990+chenqianfzh@users.noreply.github.com>
Date:   Thu Aug 29 16:09:08 2024 -0700

    support bitsandbytes 8-bit and FP4 quantized models (vllm-project#7445)

commit 257afc3
Author: Harsha vardhan manoj Bikki <39381063+hbikki@users.noreply.github.com>
Date:   Thu Aug 29 13:58:14 2024 -0700

    [Neuron] Adding support for context-lenght, token-gen buckets. (vllm-project#7885)

    Co-authored-by: Harsha Bikki <harbikh@amazon.com>

commit 86a677d
Author: Dipika Sikka <dipikasikka1@gmail.com>
Date:   Thu Aug 29 16:46:55 2024 -0400

    [misc] update tpu int8 to use new vLLM Parameters (vllm-project#7973)

commit d78789a
Author: Isotr0py <2037008807@qq.com>
Date:   Fri Aug 30 03:54:49 2024 +0800

    [Bugfix] Fix incorrect vocal embedding shards for GGUF model in tensor parallelism (vllm-project#7954)

commit c334b18
Author: kushanam <42385577+kushanam@users.noreply.github.com>
Date:   Thu Aug 29 12:15:04 2024 -0700

    extend cuda graph size for H200 (vllm-project#7894)

    Co-authored-by: youkaichao <youkaichao@126.com>

commit 6b34215
Author: Pavani Majety <pavanimajety@gmail.com>
Date:   Thu Aug 29 11:53:11 2024 -0700

    [Core][Kernels] Enable FP8 KV Cache with Flashinfer backend.  + BugFix for kv_cache_dtype=auto (vllm-project#7985)

    Co-authored-by: Simon Mo <simon.mo@hey.com>
    Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>

commit 3f60f22
Author: Alexander Matveev <59768536+alexm-neuralmagic@users.noreply.github.com>
Date:   Thu Aug 29 14:18:26 2024 -0400

    [Core] Combine async postprocessor and multi-step (vllm-project#7921)

commit f205c09
Author: Jonas M. Kübler <44084297+jmkuebler@users.noreply.github.com>
Date:   Thu Aug 29 07:18:13 2024 +0200

    [Bugfix] Unify rank computation across regular decoding and speculative decoding (vllm-project#7899)

commit ef99a78
Author: youkaichao <youkaichao@gmail.com>
Date:   Wed Aug 28 21:27:06 2024 -0700

    Revert "[Core][Kernels] Use FlashInfer backend for FP8 KV Cache when available." (vllm-project#7982)

commit 74d5543
Author: Peter Salas <peter@fixie.ai>
Date:   Wed Aug 28 20:24:31 2024 -0700

    [VLM][Core] Fix exceptions on ragged NestedTensors (vllm-project#7974)

commit a7f65c2
Author: youkaichao <youkaichao@gmail.com>
Date:   Wed Aug 28 17:32:26 2024 -0700

    [torch.compile] remove reset (vllm-project#7975)

commit 4289cad
Author: Nick Hill <nickhill@us.ibm.com>
Date:   Wed Aug 28 17:22:43 2024 -0700

    [Frontend] Minor optimizations to zmq decoupled front-end (vllm-project#7957)

    Co-authored-by: Robert Shaw <rshaw@neuralmagic>

commit af59df0
Author: Michael Goin <michael@neuralmagic.com>
Date:   Wed Aug 28 19:19:17 2024 -0400

    Remove faulty Meta-Llama-3-8B-Instruct-FP8.yaml lm-eval test (vllm-project#7961)

commit ce6bf3a
Author: youkaichao <youkaichao@gmail.com>
Date:   Wed Aug 28 16:10:12 2024 -0700

    [torch.compile] avoid Dynamo guard evaluation overhead (vllm-project#7898)

    Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>

commit 3cdfe1f
Author: bnellnm <49004751+bnellnm@users.noreply.github.com>
Date:   Wed Aug 28 18:11:49 2024 -0400

    [Bugfix] Make torch registration of punica ops optional (vllm-project#7970)

commit fdd9daa
Author: Mor Zusman <mor.zusmann@gmail.com>
Date:   Thu Aug 29 01:06:52 2024 +0300

    [Kernel/Model] Migrate mamba_ssm and causal_conv1d kernels to vLLM (vllm-project#7651)

commit 8c56e57
Author: Stas Bekman <stas00@users.noreply.github.com>
Date:   Wed Aug 28 13:54:23 2024 -0700

    [Doc] fix 404 link (vllm-project#7966)

commit eeffde1
Author: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Date:   Wed Aug 28 13:10:21 2024 -0700

    [TPU] Upgrade PyTorch XLA nightly (vllm-project#7967)

commit e5697d1
Author: rasmith <Randall.Smith@amd.com>
Date:   Wed Aug 28 14:37:47 2024 -0500

    [Kernel] [Triton] [AMD] Adding Triton implementations awq_dequantize and awq_gemm to support AWQ (vllm-project#7386)

commit b98cc28
Author: Pavani Majety <pavanimajety@gmail.com>
Date:   Wed Aug 28 10:01:22 2024 -0700

    [Core][Kernels] Use FlashInfer backend for FP8 KV Cache when available. (vllm-project#7798)

    Co-authored-by: Simon Mo <simon.mo@hey.com>

commit ef9baee
Author: Cyrus Leung <tlleungac@connect.ust.hk>
Date:   Wed Aug 28 23:11:18 2024 +0800

    [Bugfix][VLM] Fix incompatibility between vllm-project#7902 and vllm-project#7230 (vllm-project#7948)

commit 98c12cf
Author: Stas Bekman <stas00@users.noreply.github.com>
Date:   Wed Aug 28 05:12:32 2024 -0700

    [Doc] fix the autoAWQ example (vllm-project#7937)

commit f52a43a
Author: youkaichao <youkaichao@gmail.com>
Date:   Wed Aug 28 01:27:07 2024 -0700

    [ci][test] fix pp test failure (vllm-project#7945)

commit e358053
Author: Cody Yu <hao.yu.cody@gmail.com>
Date:   Wed Aug 28 00:36:31 2024 -0700

    [Performance] Enable chunked prefill and prefix caching together (vllm-project#7753)
Jeffwan pushed a commit to aibrix/vllm that referenced this pull request Sep 19, 2024
siddharth9820 pushed a commit to axonn-ai/vllm that referenced this pull request Sep 30, 2024
Alvant pushed a commit to compressa-ai/vllm that referenced this pull request Oct 26, 2024
Signed-off-by: Alvant <alvasian@yandex.ru>
KuntaiDu pushed a commit to KuntaiDu/vllm that referenced this pull request Nov 20, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
ready ONLY add when PR is ready to merge/full CI is needed
Projects
None yet
Development

Successfully merging this pull request may close these issues.

5 participants