Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bugfix] Fix InternVL2 inference with various num_patches #8375

Merged
merged 5 commits into from
Sep 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
35 changes: 35 additions & 0 deletions tests/models/test_internvl.py
Original file line number Diff line number Diff line change
Expand Up @@ -331,6 +331,41 @@ def test_multi_images_models(hf_runner, vllm_runner, image_assets, model,
)


@pytest.mark.parametrize("model", ["OpenGVLab/InternVL2-2B"])
@pytest.mark.parametrize("size_factors", [[0.5, 1.0]])
@pytest.mark.parametrize("dtype", [target_dtype])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [5])
@torch.inference_mode()
def test_different_num_patches(hf_runner, vllm_runner, image_assets, model,
size_factors, dtype: str, max_tokens: int,
num_logprobs: int) -> None:
images = [asset.pil_image.resize((896, 896)) for asset in image_assets]

inputs_batching = [(
[prompt for _ in size_factors],
[rescale_image_size(image, factor) for factor in size_factors],
) for image, prompt in zip(images, HF_IMAGE_PROMPTS)]

inputs_multi_images = [
([HF_MULTIIMAGE_IMAGE_PROMPT for _ in size_factors],
[[rescale_image_size(image, factor) for image in images]
for factor in size_factors])
]
for inputs in [inputs_batching, inputs_multi_images]:
run_test(
hf_runner,
vllm_runner,
inputs,
model,
dtype=dtype,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
mm_limit=2,
tensor_parallel_size=1,
)


@pytest.mark.parametrize(
"models", [("OpenGVLab/InternVL2-2B", "OpenGVLab/InternVL2-2B-AWQ")])
@pytest.mark.parametrize(
Expand Down
7 changes: 4 additions & 3 deletions vllm/model_executor/models/internvl.py
Original file line number Diff line number Diff line change
Expand Up @@ -270,14 +270,14 @@ def input_mapper_for_internvl(ctx: InputContext, data: object):
# Add an N dimension for number of images per prompt (currently 1).
data = data.unsqueeze(0)
elif is_list_of(data, Image.Image):
# we can't stack here because the images may have different num_patches
data = [
image_to_pixel_values(img,
image_size,
min_num,
max_num,
use_thumbnail=use_thumbnail) for img in data
]
data = torch.stack(data)
model_config = ctx.model_config
tokenizer = cached_get_tokenizer(model_config.tokenizer,
trust_remote_code=True)
Expand Down Expand Up @@ -449,11 +449,12 @@ def _parse_and_validate_image_input(
if not isinstance(pixel_values, (torch.Tensor, list)):
raise ValueError("Incorrect type of pixel values. "
f"Got type: {type(pixel_values)}")

# We need to flatten (B, N, P) to (B*N*P),
# so we call flatten_bn twice.
return InternVLImagePixelInputs(
DarkLight1337 marked this conversation as resolved.
Show resolved Hide resolved
type="pixel_values",
data=self._validate_pixel_values(
flatten_bn(pixel_values, concat=True).flatten(0, 1)),
flatten_bn(flatten_bn(pixel_values), concat=True)),
)

raise AssertionError("This line should be unreachable.")
Expand Down
Loading