Multi Prophet is a procedure for forecasting time series data for multipe dependent variables based on Facebook Prophet package. If you have no prior experience with Facebook Prophet, check out their docs.
Multi Prophet does not train a single model with many outputs, it just wraps Facebook Prophet interface to support configuration and controll over multiple models. Multi Prophet has a very similar interface as Facebook Prophet.
The main difference is that return values of each method is a dictionary where each dependent value is a key, and the value is the return value of the linked Facebook Prophet model.
If Prophet return value is a data frame, then MultiProphet return value will be:
{"dependent_variable1": df1, "dependent_variable2": df2}
Multi Prophet is on PyPi.
pip install multi-prophet
Creating a basic model is almost the same as creating a Prophet model:
# dataframe needs to have columns ds and y
from fbprophet import Prophet
m = Prophet()
m.fit(df)
future = m.create_future_dataframe(df)
forecast = m.predict(future)
m.plot(forecast)
# dataframe needs to have column ds, and it has y1 and y2 as dependent variables
from multi_prophet import MultiProphet
m = MultiProphet(columns=["y1", "y2"])
m.fit(df)
future = m.create_future_dataframe(df)
forecast = m.predict(future)
m.plot(forecast)
m.add_country_holidays(country_name="US")
# For all dependent variables
m.add_country_holidays("US")
# For selected dependent variables
m.add_country_holidays("US", columns=["y1"])
m.add_seasonality(name="monthly", period=30.5, fourier_order=5)
# For all dependent variables
m.add_seasonality(name="monthly", period=30.5, fourier_order=5)
# For selected dependent variables
m.add_seasonality(name="monthly", period=30.5, fourier_order=5, columns=["y1"])
m.add_regressor("Matchday")
# For all dependent variables
m.add_regressor("Matchday")
# For selected dependent variables
m.add_regressor("Matchday", columns=["y"])
# Prophet
m.plot(forecast)
m.plot_components(forecast)
# With Plotly
from fbprophet.plot import plot_plotly, plot_components_plotly
import plotly.offline as py
py.init_notebook_mode()
fig = plot_plotly(m, forecast)
py.iplot(fig)
fig = plot_components_plotly(m, forecast)
py.iplot(fig)
m.plot(forecast)
m.plot_components(forecast)
# With Plotly
figures = m.plot(forecast, plotly=True)
for fig in figures.values():
fig.show()
# or access by key
figures["y1"].show()
figures = m.plot_components(forecast, plotly=True)
for fig in figures.values():
fig.show()
# or access by key
figures["y1"].show()
Facebook Prophet supports a lot of configuration through kwargs. There are two ways to do it with Multi Prophet:
- Through kwargs just as with Facebook Prophet
- Prophet
m = Prophet(growth="logistic")
m.fit(self.df, algorithm="Newton")
m.make_future_dataframe(7, freq="H")
m.add_regressor("Matchday", prior_scale=10)
* Multi Prophet
m = MultiProphet(columns=["y1", "y2"], growth="logistic")
m.fit(self.df, algorithm="Newton")
m.make_future_dataframe(7, freq="H")
m.add_regressor("Matchday", prior_scale=10)
- Configuration through constructor
# Same configuration for each dependent variable
m = MultiProphet(columns=["y1", "y2"],
growth="logistic",
weekly_seasonality=True,
n_changepoints=50)
# Different configuration for each model
config = {
"y1": {"growth": "linear", "daily_seasonality": True},
"y2": {"growth": "logistic", "weekly_seasonality": True}
}
m = MultiProphet(columns=["y1", "y2"], config=config)
# Adding regressors (dataframe has columns c1 and c2)
regressors = {
"y1": [
{"name": "c1", "prior_scale": 0.5},
{ "name": "c2", "prior_scale": 0.3}
],
"y2": [{"name": "c2", "prior_scale": 0.3}]
}
m = MultiProphet(columns=["y1", "y2"], regressors=regressors)