Download the Imagenet-100 from the links: https://sutdapac-my.sharepoint.com/:u:/g/personal/vovan_tuan_sutd_edu_sg/EaWA3oLM575Nv_0mXoL7vlYBlhJ5IZvGc1YbjIjkavovUg?e=e5v6HM
UnZip and Move all downloaded folders into the ./dataset
- Please first download our pretrained AlphaNet models on Imagenet-100 and put the pretrained models under your local folder ./alphanet_data
To search the Pareto models for the best FLOPs vs. accuracy tradeoffs in parallel_supernet_evo_search.py; to run this example; the results will saved at ./result_search:
python parallel_supernet_evo_search.py --config-file configs/parallel_supernet_evo_search.yml
In case search with fixed some layer, please change the config file to fixed layer: ./configs/parallel_supernet_evo_search.yml
supernet_config_fix:
use_v3_head: True
resolutions: [192, 224, 256, 288]
first_conv:
c: [16]
act_func: 'swish'
s: 2
mb1:
c: [16]
d: [1]
k: [3]
t: [1]
s: 1
act_func: 'swish'
se: False
mb2:
c: [24]
d: [3]
k: [3]
t: [4]
s: 2
act_func: 'swish'
se: False
mb3:
c: [32, 40]
d: [3, 4, 5, 6]
k: [3, 5]
t: [4, 5, 6]
s: 2
act_func: 'swish'
se: True
mb4:
c: [64, 72]
d: [3, 4, 5, 6]
k: [3, 5]
t: [4, 5, 6]
s: 2
act_func: 'swish'
se: False
mb5:
c: [112, 120, 128]
d: [3, 4, 5, 6, 7, 8]
k: [3, 5]
t: [4, 5, 6]
s: 1
act_func: 'swish'
se: True
mb6:
c: [192, 200, 208, 216]
d: [3, 4, 5, 6, 7, 8]
k: [3, 5]
t: [6]
s: 2
act_func: 'swish'
se: True
mb7:
c: [216, 224]
d: [1, 2]
k: [3, 5]
t: [6]
s: 1
act_func: 'swish'
se: True
last_conv:
c: [1792, 1984]
act_func: 'swish'