Python >= 3.6
PyTorch >= 2.0.0
nas-bench-201
- Download three datasets (CIFAR-10, CIFAR-100, ImageNet16-120) from Google Drive, place them into the directory
./data
- Download the
data
directory and save it to the root folder of this repo. - Download the benchmark files of NAS-Bench-201 from Google Drive , put them into the directory
./data
- Download the NAS-Bench-101 dataset, put it into the directory
./data
- Install
zero-cost-nas
cd zero-cost-nas
pip install .
cd ..
cd correlation
python NAS_Bench_101.py
python NAS_Bench_201.py
- Run Zero-Cost-PT with appointed zero-cost proxy:
cd exp_scripts
bash zerocostpt_nb201_pipline.sh --metric [metric] --batch_size [batch_size] --seed [seed]
You can choice metric from ['snip', 'fisher', 'synflow', 'grad_norm', 'grasp', 'jacob_cov','tenas', 'zico', 'meco']
cd exp_scripts
bash zerocostpt_darts_pipline.sh --metric [metric] --batch_size [batch_size] --seed [seed]
cd exp_scripts
bash zerocostpt_darts_pipline.sh --metric [metric] --batch_size [batch_size] --seed [seed] --space [s1-s4]
Our code is based on Zero-Cost-PT and Zero-Cost-NAS.