Skip to content

Commit

Permalink
update docs to markdown
Browse files Browse the repository at this point in the history
  • Loading branch information
LiNk-NY committed Nov 20, 2024
1 parent ec384dd commit 888af3f
Show file tree
Hide file tree
Showing 18 changed files with 225 additions and 279 deletions.
61 changes: 25 additions & 36 deletions R/CITEseq.R
Original file line number Diff line number Diff line change
Expand Up @@ -144,51 +144,40 @@
#' available datasets associated to the package.
#' @author Dario Righelli
#' @details CITEseq data are a combination of single cell transcriptomics and
#' about a hundread of cell surface proteins.
#' about a hundread of cell surface proteins.
#' Available datasets are:
#' * cord_blood: a dataset of single cells of cord blood as
#' provided in Stoeckius et al. (2017).
#' * scRNA_Counts - Stoeckius scRNA-seq gene count matrix
#' * scADT - Stoeckius antibody-derived tags (ADT) data
#' * peripheral_blood: a dataset of single cells of peripheral
#' blood as provided in Mimitou et al. (2019). We provide two different
#' conditions controls (CTRL) and Cutaneous T-cell Limphoma (CTCL). Just build
#' appropriate `modes` regex for subselecting the dataset modes.
#' * scRNA - Mimitou scRNA-seq gene count matrix
#' * scADT - Mimitou antibody-derived tags (ADT) data
#' * scHTO - Mimitou Hashtag Oligo (HTO) data
#' * TCRab - Mimitou T-cell Receptors (TCR) alpha and beta
#' available through the object metadata.
#' * TCRgd - Mimitou T-cell Receptors (TCR) gamma and delta
#' available through the object metadata.
#'
#' Available datasets are:
#' \itemize{
#' \item{cord_blood:} a dataset of single cells of cord blood as
#' provided in Stoeckius et al. (2017).
#' \itemize{
#' \item{scRNA_Counts} - Stoeckius scRNA-seq gene count matrix
#' \item{scADT} - Stoeckius antibody-derived tags (ADT) data
#' }
#' }
#' \itemize{
#' \item{peripheral_blood:} a dataset of single cells of peripheral
#' blood as provided in Mimitou et al. (2019).
#' We provide two different conditions controls (CTRL) and
#' Cutaneous T-cell Limphoma (CTCL).
#' Just build appropriate \code{modes} regex for subselecting the
#' dataset modes.
#' \itemize{
#' \item{scRNA} - Mimitou scRNA-seq gene count matrix
#' \item{scADT} - Mimitou antibody-derived tags (ADT) data
#' \item{scHTO} - Mimitou Hashtag Oligo (HTO) data
#' \item{TCRab} - Mimitou T-cell Receptors (TCR) alpha and beta
#' available through the object metadata.
#' \item{TCRgd} - Mimitou T-cell Receptors (TCR) gamma and delta
#' available through the object metadata.
#' }
#' }
#'
#' @param DataType character(1) indicating the identifier of the dataset to
#' @param DataType `character(1)` indicating the identifier of the dataset to
#' retrieve. (default "cord_blood")
#'
#' @param modes character() The assay types or modes of data to obtain these
#' @param modes `character()` The assay types or modes of data to obtain these
#' include scADT and scRNA-seq data by default.
#'
#' @param version character(1) Either version '1.0.0' depending on
#' @param version `character(1)` Either version '1.0.0' depending on
#' data version required.
#' @param dry.run logical(1) Whether to return the dataset names before actual
#' download (default TRUE)
#' @param filtered logical(1) indicating if the returned dataset needs to
#' @param dry.run `logical(1)` Whether to return the dataset names before actual
#' download (default `TRUE`)
#' @param filtered `logical(1)` indicating if the returned dataset needs to
#' have filtered cells.
#' See Details for additional information about the filtering process.
#'
#' @param verbose logical(1) Whether to show the dataset currently being
#' (down)loaded (default TRUE)
#' @param verbose `logical(1)` Whether to show the dataset currently being
#' (down)loaded (default `TRUE`)
#'
#' @param ... Additional arguments passed on to the
#' \link[ExperimentHub]{ExperimentHub-class} constructor
Expand Down
39 changes: 17 additions & 22 deletions R/GTseq.R
Original file line number Diff line number Diff line change
Expand Up @@ -20,45 +20,42 @@
#' @details G&T-seq is a combination of Picoplex amplified gDNA sequencing
#' (genome) and SMARTSeq2 amplified cDNA sequencing (transcriptome) of the
#' same cell. For more information, see Macaulay et al. (2015).
#' \itemize{
#' \item{mouse_embryo_8_cell:}
#' this dataset was filtered for bad cells as specified in Macaulay
#' et al. (2015).
#' \itemize{
#' \item{genomic} - integer copy numbers as detected from scDNA-seq
#' \item{transcriptomic} - raw read counts as quantified from scRNA-seq
#' }
#' }
#' * mouse_embryo_8_cell:
#' this dataset was filtered for bad cells as specified in Macaulay
#' et al. (2015).
#' * genomic - integer copy numbers as detected from scDNA-seq
#' * transcriptomic - raw read counts as quantified from scRNA-seq
#'
#' @section metadata:
#' The `MultiAssayExperiment` metadata includes the original function call
#' that saves the function call and the data version requested.
#'
#' @param DataType character(1) Indicates study that produces this type of
#' @param DataType `character(1)` Indicates study that produces this type of
#' data (default: 'mouse_embryo_8_cell')
#'
#' @param modes character() A wildcard / glob pattern of modes, such as
#' \code{"*omic"}. A wildcard of \code{"*"} will return all modes including
#' @param modes `character()` A wildcard / glob pattern of modes, such as
#' `"*omic"`. A wildcard of `"*"` will return all modes including
#' copy numbers ("genomic") and RNA-seq read counts ("transcriptomic"),
#' which is the default.
#'
#' @param version character(1). Currently, only version '1.0.0'.
#' @param version `character(1)` Currently, only version '1.0.0'.
#'
#' @param dry.run logical(1) Whether to return the dataset names before actual
#' download (default TRUE)
#' @param dry.run `logical(1)` Whether to return the dataset names before actual
#' download (default `TRUE`)
#'
#' @param verbose logical(1) Whether to show the dataset currently being
#' (down)loaded (default TRUE)
#' @param verbose `logical(1)` Whether to show the dataset currently being
#' (down)loaded (default `TRUE`)
#'
#' @param ... Additional arguments passed on to the
#' [ExperimentHub][ExperimentHub::ExperimentHub-class] constructor
#'
#' @seealso SingleCellMultiModal-package
#'
#' @return A single cell multi-modal \linkS4class{MultiAssayExperiment} or
#' informative `data.frame` when `dry.run` is `TRUE`
#' @return A single cell multi-modal
#' [MultiAssayExperiment][MultiAssayExperiment::MultiAssayExperiment-class] or
#' informative `data.frame` when `dry.run` is `TRUE`
#'
#' @source \url{https://www.ebi.ac.uk/ena/browser/view/PRJEB9051}
#' @source <https://www.ebi.ac.uk/ena/browser/view/PRJEB9051>
#'
#' @references
#' Macaulay et al. (2015) G&T-seq: parallel sequencing of single-cell
Expand All @@ -67,8 +64,6 @@
#' Macaulay et al. (2016) Separation and parallel sequencing of the genomes
#' and transcriptomes of single cells using G&T-seq. Nat Protoc, 11:2081–103.
#'
#' @md
#'
#' @examples
#'
#' GTseq()
Expand Down
28 changes: 11 additions & 17 deletions R/SCoPE2.R
Original file line number Diff line number Diff line change
Expand Up @@ -4,39 +4,35 @@
#' a
#' [`MultiAssayExperiment`][MultiAssayExperiment::MultiAssayExperiment-class]
#' container. The `DataType` argument provides access to the `SCoPE2` dataset
#' as provided by Specht et al. (2020; DOI: http://dx.doi.org/10.1101/665307).
#' The article provides more information about the data acquisition and
#' pre-processing.
#' as provided by Specht et al. (2020; DOI:
#' <http://dx.doi.org/10.1101/665307>). The article provides more information
#' about the data acquisition and pre-processing.
#'
#' @details The SCoPE2 study combines scRNA-seq (transcriptome) and
#' single-cell proteomics.
#'
#' \itemize{
#' \item{macrophage_differentiation:} the cells are monocytes that undergo
#' * macrophage_differentiation: the cells are monocytes that undergo
#' macrophage differentiation. No annotation is available for the
#' transcriptome data, but batch and cell type annotations are
#' available for the proteomics data in the `celltype` `colData` column.
#' The transcriptomics and proteomics data were not measured from the same
#' cells but from a distinct set of cell cultures.
#' This dataset provides already filtered bad quality cells.
#' \itemize{
#' \item{scRNAseq1} - single-cell transcriptome (batch 1)
#' \item{scRNAseq2} - single-cell transcriptome (batch 2)
#' \item{scp} - single-cell proteomics
#' }
#' }
#' * scRNAseq1 - single-cell transcriptome (batch 1)
#' * scRNAseq2 - single-cell transcriptome (batch 2)
#' * scp - single-cell proteomics
#'
#' @inheritParams scNMT
#'
#' @param DataType character(1) Indicates study that produces this type of
#' @param DataType `character(1)` Indicates study that produces this type of
#' data (default: 'macrophage_differentiation')
#'
#' @param modes character() A wildcard / glob pattern of modes, such as
#' @param modes `character()` A wildcard / glob pattern of modes, such as
#' `"rna"`. A wildcard of `"*"` will return all modes, that are
#' transcriptome ("rna") or proteome ("protein") which is the
#' default.
#'
#' @param version character(1), currently only version '1.0.0' is
#' @param version `character(1)`, currently only version '1.0.0' is
#' available
#'
#' @return A single cell multi-modal
Expand All @@ -46,7 +42,7 @@
#' @seealso SingleCellMultiModal-package
#'
#' @source All files are linked from the slavovlab website
#' \url{https://scope2.slavovlab.net/docs/data}
#' <https://scope2.slavovlab.net/docs/data>
#'
#' @references
#' Specht, Harrison, Edward Emmott, Aleksandra A. Petelski, R.
Expand All @@ -55,8 +51,6 @@
#' Proteomic and Transcriptomic Analysis of Macrophage
#' Heterogeneity.” bioRxiv. https://doi.org/10.1101/665307.
#'
#' @md
#'
#' @examples
#'
#' SCoPE2(DataType = "macrophage_differentiation",
Expand Down
6 changes: 2 additions & 4 deletions R/SingleCellMultiModal.R
Original file line number Diff line number Diff line change
Expand Up @@ -27,13 +27,13 @@
#'
#' @inheritParams scNMT
#'
#' @param DataTypes character() A vector of data types as indicated in each
#' @param DataTypes `character()` A vector of data types as indicated in each
#' individual function by the `DataType` parameter. These can be any of
#' the following: "mouse_gastrulation", "pbmc_10x",
#' "macrophage_differentiation", "cord_blood", "peripheral_blood",
#' "mouse_visual_cortex", "mouse_embryo_8_cell"
#'
#' @param versions character() A vector of versions for each DataType. By
#' @param versions `character()` A vector of versions for each DataType. By
#' default, version `1.0.0` is obtained for all data types.
#'
#' @param modes list() A list or CharacterList of modes for each data type
Expand All @@ -47,8 +47,6 @@
#' a `call_map` which provides traceability of technology functions to
#' `DataType` prefixes, and lastly, R version information as `version`.
#'
#' @md
#'
#' @examples
#'
#' SingleCellMultiModal(c("mouse_gastrulation", "pbmc_10x"),
Expand Down
12 changes: 5 additions & 7 deletions R/cache.R
Original file line number Diff line number Diff line change
Expand Up @@ -14,35 +14,33 @@
#' @section scmmCache:
#' Get the directory location of the cache. It will prompt the user to create
#' a cache if not already created. A specific directory can be used via
#' \code{setCache}.
#' `setCache`.
#'
#' @section setCache:
#' Specify the directory location of the data cache. By default, it will
#' go into the user's home and package name directory as given by
#' \link[tools:userdir]{R_user_dir} (default: varies by system e.g., for Linux:
#' [R_user_dir][tools::R_user_dir] (default: varies by system e.g., for Linux:
#' '$HOME/.cache/R/SingleCellMultiModal').
#'
#' @section removeCache:
#' Some files may become corrupt when downloading, this function allows
#' the user to delete the tarball associated with a study number in the
#' cache.
#'
#' @param directory character(1) The file location where the cache is located.
#' @param directory `character(1)` The file location where the cache is located.
#' Once set, future downloads will go to this folder. See `setCache` section
#' for details.
#'
#' @param verbose Whether to print descriptive messages
#'
#' @param ask logical(1) (default TRUE when `interactive()`) Confirm the file
#' @param ask `logical(1)` (default TRUE when `interactive()`) Confirm the file
#' location of the cache directory
#'
#' @param accession character(1) A single string indicating the accession number
#' @param accession `character(1)` A single string indicating the accession number
#' of the study
#'
#' @param ... For `scmmCache`, arguments passed to `setCache`
#'
#' @md
#'
#' @examples
#' getOption("scmmCache")
#' scmmCache()
Expand Down
10 changes: 5 additions & 5 deletions R/cellGating.R
Original file line number Diff line number Diff line change
@@ -1,14 +1,14 @@

#' addCTLabels
#'
#' @param cd the \code{colData} \code{DataFrame}
#' @param out list data structure returned by \code{getCellGroups}
#' @param cd the `colData` `DataFrame`
#' @param out list data structure returned by `getCellGroups`
#' @param outname character indicating the name of the out data structure
#' @param ct character indicating the celltype to assign in the \code{ctcol}
#' @param ct character indicating the celltype to assign in the `ctcol`
#' @param mkrcol character indicating the cd column to store the markers
#' indicated by \code{outname} (default is markers)
#' indicated by `outname` (default is markers)
#' @param ctcol character indicating the column in cd to store the cell type
#' indicated by \code{ct} (default is celltype)
#' indicated by `ct` (default is celltype)
#' @param overwrite logical indicating if the cell types have to be overwritten
#' without checking if detected barcodes were already assigned to other celltypes
#' @param verbose logical for having informative messages during the execution
Expand Down
21 changes: 9 additions & 12 deletions R/scMultiome.R
Original file line number Diff line number Diff line change
Expand Up @@ -82,30 +82,27 @@

#' Single-cell Multiome ATAC + Gene Expression
#'
#' @description 10x Genomics Multiome technology enables simultaneous profiling
#' of the transcriptome (using 3’ gene expression) and epigenome
#' @description 10x Genomics Multiome technology enables simultaneous profiling
#' of the transcriptome (using 3’ gene expression) and epigenome
#' (using ATAC-seq) from single cells to
#' deepen our understanding of how genes are expressed and regulated across
#' different cell types. Data prepared by Ricard Argelaguet.
#'
#' @details Users are able to choose from either an `MTX` or `HDF5` file format
#' as the internal data representation. The `MTX` (Matrix Market)
#' format allows users to load a sparse `dgCMatrix` representation.
#' Choosing `HDF5` gives users a sparse `HDF5Array` class object.
#' \itemize{pbmc_10x:} 10K Peripheral Blood Mononuclear Cells provided by
#' as the internal data representation. The `MTX` (Matrix Market) format
#' allows users to load a sparse `dgCMatrix` representation. Choosing `HDF5`
#' gives users a sparse `HDF5Array` class object.
#' * pbmc_10x: 10K Peripheral Blood Mononuclear Cells provided by
#' [10x Genomics website](https://support.10xgenomics.com/single-cell-multiome-atac-gex/datasets)
#' Cell quality control filters are available in the object `colData`
#' together with the `celltype` annotation labels.
#'
#' Cell quality control filters are available in the object `colData`
#' together with the `celltype` annotation labels.
#'
#' @inheritParams scNMT
#'
#' @param format Either MTX or HDF5 data format (default MTX)
#' @param format `character(1)` Either MTX or HDF5 data format (default MTX)
#'
#' @return A 10X PBMC `MultiAssayExperiment` object
#'
#' @md
#'
#' @examples
#'
#' scMultiome(DataType = "pbmc_10x", modes = "*", dry.run = TRUE)
Expand Down
Loading

0 comments on commit 888af3f

Please sign in to comment.