This module can be used to replace keywords in sentences or extract keywords from sentences. It is based on the FlashText algorithm.
Compared with standard FlashText algorithm, there are some differences which make go-flashtext more powerful:
- Chinese is support fully. Python implement supports Chinese not well.
- We break nonWordBoundaries in FlashText algorithm to make it more powerful, which means that keyword could contains char not in [_0-9a-zA-Z].
- We allow the same keyword with different cleanNames exists, which means keywords are not unique. We found this is very useful in Industry envs.
To install GoFlashText package, you need to install Go and set your Go workspace first.
- The first need Go installed, then you can use the below Go command to install GoFlashText.
$ go get -u github.com/waltsmith88/go-flashtext
- Import it in your code:
imoprt gf "github.com/waltsmith88/go-flashtext"
- Extract keywords
package main
import (
"fmt"
gf "github.com/waltsmith88/go-flashtext"
)
func main() {
// add keywords from Map
keywordMap := map[string]string{
"love": "love",
"hello": "hello",
}
keywordProcessor := gf.NewKeywordProcessor()
keywordProcessor.AddKeywordsFromMap(keywordMap)
foundList := keywordProcessor.ExtractKeywords("I love coding.")
fmt.Println(foundList)
}
// [love]
- Extract keywords With Chinese Support
package main
import (
"fmt"
gf "github.com/waltsmith88/go-flashtext"
)
func main() {
// add keywords from Map
keywordMap := map[string]string{
"love": "love",
"中国": "中文",
}
keywordProcessor := gf.NewKeywordProcessor()
keywordProcessor.AddKeywordsFromMap(keywordMap)
keywordProcessor.AddKeyword("love", "ove")
foundList := keywordProcessor.ExtractKeywords("I Love 中国.")
fmt.Println(foundList)
}
// [中文]
- Case Sensitive example
package main
import (
"fmt"
gf "github.com/waltsmith88/go-flashtext"
)
func main() {
// add keywords from Map
keywordMap := map[string]string{
"love": "love",
"中国": "中文",
}
keywordProcessor := gf.NewKeywordProcessor()
keywordProcessor.SetCaseSensitive(false)
keywordProcessor.AddKeywordsFromMap(keywordMap)
keywordProcessor.AddKeyword("love", "ove")
foundList := keywordProcessor.ExtractKeywords("I Love 中国.")
fmt.Println(foundList)
}
// [love|ove 中文]
- Unique Keywords example
func main() {
// add keywords from Map
keywordMap := map[string]string{
"love": "love",
"中国": "中文",
}
keywordProcessor := gf.NewKeywordProcessor()
keywordProcessor.SetUniqueKeyword(true)
keywordProcessor.SetCaseSensitive(false)
keywordProcessor.AddKeywordsFromMap(keywordMap)
keywordProcessor.AddKeyword("love", "ove")
foundList := keywordProcessor.ExtractKeywords("I Love 中国.")
fmt.Println(foundList)
}
// [ove 中文]
- Span of keywords extracted
func main() {
// add keywords from Map
keywordMap := map[string]string{
"love": "love",
"中国": "中文",
}
keywordProcessor := gf.NewKeywordProcessor()
keywordProcessor.AddKeywordsFromMap(keywordMap)
sentence := "I love 中国."
cleanNameRes := keywordProcessor.ExtractKeywordsWithSpanInfo(sentence)
sentence1 := []rune(sentence)
for _, resSpan := range cleanNameRes {
fmt.Println(resSpan.CleanName, resSpan.StartPos, resSpan.EndPos, fmt.Sprintf("%c", sentence1[resSpan.StartPos:resSpan.EndPos]))
}
}
// love 2 6 [l o v e]
// 中文 7 9 [中 国]
- Add Multiple Keywords simultaneously
// way 1: from Map
keywordMap := map[string]string{
"abcd": "abcd",
"student": "stu",
}
keywordProcessor.AddKeywordsFromMap(keywordMap)
// way 2: from Slice
keywordProcessor.AddKeywordsFromList([]string{"student", "abcd", "abc", "中文"})
// way 3: from file. Line: keyword => cleanName
keywordProcessor.AddKeywordsFromFile(filePath)
- To Remove keywords
keywordProcessor.RemoveKeyword("abc")
keywordProcessor.RemoveKeywordFromList([]string{"student", "abcd", "abc", "中文"})
- To Replace keywords
newSentence := keywordProcessor.ReplaceKeywords(sourceSentence)
- To check Number of terms in KeywordProcessor
keywordProcessor.Len()
- To check if term is present in KeywordProcessor
keywordProcessor.IsContains("abc")
- Get all keywords in dictionary
keywordProcessor.GetAllKeywords()
More Examples about Usage in go-flashtext/examples/examples.go and you could have a taste by using following command:
$ go run examples/examples.go
$ git clone github.com/waltsmith88/go-flashtext
$ cd go-flashtext
$ go test -v
It's a custom algorithm based on Aho-Corasick algorithm and Trie Dictionary.
Time taken by FlashText to find terms in comparison to Regex.
Time taken by FlashText to replace terms in comparison to Regex.
Link to code for benchmarking the Find Feature and Replace Feature.
The idea for this library came from the following StackOverflow question.
The original paper published on FlashText algorithm.
@ARTICLE{2017arXiv171100046S,
author = {{Singh}, V.},
title = "{Replace or Retrieve Keywords In Documents at Scale}",
journal = {ArXiv e-prints},
archivePrefix = "arXiv",
eprint = {1711.00046},
primaryClass = "cs.DS",
keywords = {Computer Science - Data Structures and Algorithms},
year = 2017,
month = oct,
adsurl = {http://adsabs.harvard.edu/abs/2017arXiv171100046S},
adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
The article published on Medium freeCodeCamp.
- Issue Tracker: https://github.com/waltsmith88/go-flashtext/issues
- Source Code: https://github.com/waltsmith88/go-flashtext
The project is licensed under the MIT license.