Skip to content

Codebase for "Causal Induction from Visual Observations for Goal-Directed Tasks"

Notifications You must be signed in to change notification settings

wang92332/causal_induction

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Environment

Consists of the light switch environment for studying visual causal induction, where N switches control N lights, under various causal structures. Includes common cause, common effect, and causal chain relationships. Environment code resides under env/light_env.py.

Induction Models

The different induction models used are located under F_models.py, incuding our proposed iterative attention network, as well as baselines which do not use attention or use temporal convolutions.

Reproducing Experiments

Step 1: Generate Data

python3 collectdata.py --horizon 7 --num 7 --fixed-goal 0 --structure one_to_one --seen 10 --images 1 --data-dir output/

Step 2: Train Induction Model

python3 trainF.py --horizon 7 --num 7 --fixed-goal 0 --structure one_to_one --type iter --images 1 --seen 10 --data-dir output/

Step 3: Eval Induction Model

python3 evalF.py --horizon 7 --num 7 --fixed-goal 0 --structure one_to_one --method trajFi --images 1 --seen 10 --data-dir output/

Step 4: Train Policy via Imitation

python3 learn_planner.py --horizon 7 --num 7 --fixed-goal 0 --structure one_to_one --method trajFi --seen 10 --images 1 --data-dir output/

About

Codebase for "Causal Induction from Visual Observations for Goal-Directed Tasks"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 78.8%
  • Shell 21.2%