Skip to content

wangjiarui153/MINT-IQA

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MINT-IQA: Quality Assessment for AI Generated Images with Instruction Tuning

829deda32314ffdebed7da1edc40ace

🛠️ Installation

Clone this repository:

git clone https://github.com/wangjiarui153/MINT-IQAL.git

Create a conda virtual environment and activate it:

conda create -n MINTIQA python=3.8
conda activate MINTIQA

Install dependencies using requirements.txt:

pip install -r requirements.txt

🚀 Weight and Database Download

The codes and inference weights can be downloaded from 链接:https://pan.baidu.com/s/1dJNN9sL-cPytOm8vjEDEHQ 提取码:k2vf

The Database is in: https://github.com/wangjiarui153/AIGCIQA2023

🌈 Inference

Set img_path in inference.py line29 Set the corresponding prompt to the image in inference.py line31 file setting in config/options_infer.py

python inference.py

📌 TODO

  • ✅ Release the AIGCIQA2023 database
  • ✅ Release the Inference code (stage1 and stage2)
  • Release the training code (stage1 and stage2)

📧 Contact

If you have any inquiries, please don't hesitate to reach out via email at wangjiarui@sjtu.edu.cn

🎓Citations

If you find AIGV-Assessor is helpful, please cite:

@misc{wang2024understandingevaluatinghumanpreferences,
      title={Understanding and Evaluating Human Preferences for AI Generated Images with Instruction Tuning}, 
      author={Jiarui Wang and Huiyu Duan and Guangtao Zhai and Xiongkuo Min},
      year={2024},
      eprint={2405.07346},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2405.07346}, 
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%