Skip to content

wangna11BD/MonoDETR_paddle

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

使用文档

环境要求

  • PaddlePaddle 2.4及以上
  • OS 64位操作系统
  • Python 3(3.5.1+/3.6/3.7/3.8/3.9),64位版本
  • pip/pip3(9.0.1+),64位版本
  • CUDA >= 10.1
  • cuDNN >= 7.6

安装说明

1. 安装PaddlePaddle

# CUDA10.2
python -m pip install paddlepaddle-gpu==0.0.0.post102 -f https://www.paddlepaddle.org.cn/whl/linux/gpu/develop.html

请确保您的PaddlePaddle安装成功。使用以下命令进行验证。

# 在您的Python解释器中确认PaddlePaddle安装成功
>>> import paddle
>>> paddle.utils.run_check()

# 确认PaddlePaddle版本
python -c "import paddle; print(paddle.__version__)"

注意

  1. 如果您希望在多卡环境下使用PaddleDetection,请首先安装NCCL

2. 编译自定义算子

# 安装依赖
git clone https://github.com/PaddlePaddle/Paddle3D.git
cd Paddle3D
pip install -r requirements.txt
pip install -e .

cd paddle3d/ops/
python setup.py install

cd ../../../

2. 安装环境

# 安装依赖
git clone https://github.com/wangna11BD/MonoDETR_paddle.git 

cd MonoDETR_paddle
pip install -r requirements.txt
mkdir logs
  1. 下载 KITTI 数据集,数据集结构如下:
    │MonoDETR_paddle/
    ├──...
    ├──data/KITTIDataset/
    │   ├──ImageSets/
    │   ├──training/
    │   ├──testing/
    ├──...
    

使用说明

MonoDETR模型的配置文件为configs/monodetr.yaml目录下

resnet50预训练模型下载

下载预训练模型放在当前文件夹下 https://ecloud.baidu.com?t=e34a3edaf4cd7160ef09995bef241171

训练

bash train.sh configs/monodetr.yaml > logs/monodetr.log

评估

bash test.sh configs/monodetr.yaml

复现结果

训练环境:16G P40 cuda10.2 py3.6.8 torch1.12.0 paddle2.4 复现结果对比 (paddle1为第一版代码训练结果,paddle2为第二版代码训练结果)

Easy Mod. Hard log 模型
torch 25.46% 19.74% 16.57% log model
torch 25.77% 18.63% 15.38% - -
paddle1 26.47% 18.78% 15.54% - -
paddle1 26.21% 18.93% 15.75% - -
paddle1 27.23% 19.55% 16.15% log1log2 model
paddle1 23.91% 18.10% 15.13% - -
paddle2 26.29% 19.23% 16.05% log model
paddle2 26.04% 19.30% 15.92% log model
paddle2 25.93% 19.24% 16.09% log model
paddle2 26.57% 19.12% 15.90% log model
paddle2 26.33% 19.09% 15.89% log model

Citation

@article{zhang2022monodetr,
  title={MonoDETR: Depth-aware Transformer for Monocular 3D Object Detection},
  author={Zhang, Renrui and Qiu, Han and Wang, Tai and Xu, Xuanzhuo and Guo, Ziyu and Qiao, Yu and Gao, Peng and Li, Hongsheng},
  journal={arXiv preprint arXiv:2203.13310},
  year={2022}
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published