forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request PaddlePaddle#23 from ZHUI/gpt2/add_eval
[GPT-2] Add the gpt-2 eval scripts.
- Loading branch information
Showing
4 changed files
with
341 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,308 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import re | ||
import os | ||
import json | ||
import math | ||
import time | ||
import argparse | ||
|
||
import numpy as np | ||
import paddle | ||
from paddle.io import DataLoader, Dataset | ||
from paddlenlp.transformers import GPT2Model, GPT2ForPretraining | ||
from paddlenlp.transformers import GPT2Tokenizer | ||
from paddlenlp.transformers import GPT2Model | ||
from paddlenlp.data import Stack, Tuple, Pad | ||
from paddlenlp.utils.log import logger | ||
|
||
MODEL_CLASSES = { | ||
"gpt2-small-en": (GPT2ForPretraining, GPT2Tokenizer), | ||
"gpt2-medium-en": (GPT2ForPretraining, GPT2Tokenizer), | ||
"gpt2-large-en": (GPT2ForPretraining, GPT2Tokenizer), | ||
} | ||
|
||
# yapf: disable | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--model_name_or_path", default=None, type=str, required=True, help="Path to pre-trained model or shortcut name selected in the list: " | ||
+ ", ".join(sum([list(classes[-1].pretrained_init_configuration.keys()) for classes in MODEL_CLASSES.values()], [])), ) | ||
parser.add_argument("--eval_path", default=None, type=str, required=True, help="The eval file path.", ) | ||
parser.add_argument('--cloze_eval', action='store_true', help='Evaluation dataset from `--eval_path` is a cloze task') | ||
parser.add_argument('--overlapping_eval', type=int, default=32, help='Sliding window for overlapping eval ') | ||
parser.add_argument("--init_checkpoint_path", default=None, type=str, help="The model checkpoint path.", ) | ||
parser.add_argument( "--batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.", ) | ||
parser.add_argument('--seq_length', type=int, default=1024, help='Maximum sequence length to process for evaluation.') | ||
parser.add_argument("--device", type=str, default="gpu", help="Select cpu, gpu, xpu devices.") | ||
parser.add_argument("--logging_steps", type=int, default=100, help="Log every X updates steps.") | ||
# yapf: enable | ||
|
||
|
||
class LM_Eval_Dataset(paddle.io.Dataset): | ||
def __init__(self, tokens, seq_len, pad_idx, overlapping_eval=None): | ||
self.tokens = tokens | ||
self.seq_len = seq_len | ||
self.pad_idx = pad_idx | ||
self.overlapping_eval = overlapping_eval | ||
if self.overlapping_eval is None: | ||
self.overlapping_eval = self.seq_len | ||
self.overlapping_eval = max(1, self.overlapping_eval) | ||
|
||
self.total_targets = len(self.tokens) - 1 | ||
# remove first sequence tokens | ||
targets = max(self.total_targets - self.overlapping_eval, 0) | ||
self.total_sequences = max( | ||
math.ceil(targets / self.overlapping_eval) + 1, 1) | ||
|
||
def __len__(self): | ||
return self.total_sequences | ||
|
||
def _construct_sample(self, tokens): | ||
tokens = np.array(tokens).astype("int64").tolist() | ||
labels = tokens[1:] | ||
tokens = tokens[:-1] | ||
seq_length = len(tokens) | ||
# attention mask for the attention calulate | ||
attention_mask = np.tri(seq_length, seq_length).reshape( | ||
(1, seq_length, seq_length)) | ||
|
||
# the pad and eod tokens do not contribute the loss | ||
loss_mask = np.ones(seq_length, dtype="float32") | ||
loss_mask[np.where(np.array(tokens) == self.pad_idx)] = 0.0 | ||
position_ids = np.arange(0, seq_length, dtype="int64") | ||
|
||
# -INF mask value as default | ||
attention_mask = (attention_mask - 1.0) * 1e9 | ||
# Bool mask of attention | ||
attention_mask = attention_mask.astype("float32") | ||
return [tokens, loss_mask, attention_mask, position_ids, labels] | ||
|
||
def __getitem__(self, idx): | ||
start_idx = idx * self.overlapping_eval | ||
end_idx = start_idx + self.seq_len | ||
tokens = self.tokens[start_idx:end_idx + 1] | ||
num_tokens = len(tokens) | ||
if num_tokens < self.seq_len + 1: | ||
num_pad = (self.seq_len + 1 - num_tokens) | ||
tokens += [self.pad_idx] * num_pad | ||
[tokens, loss_mask, attention_mask, position_ids, | ||
labels] = self._construct_sample(tokens) | ||
if self.overlapping_eval != self.seq_len and idx != 0: | ||
loss_mask[:-self.overlapping_eval] *= 0 | ||
|
||
return [tokens, loss_mask, attention_mask, position_ids, labels] | ||
|
||
|
||
class Lambada_Eval_Dataset(paddle.io.Dataset): | ||
def __init__(self, tokens, labels, seq_len, pad_idx): | ||
self.seq_len = seq_len | ||
self.pad_idx = pad_idx | ||
self.tokens = tokens | ||
self.labels = labels | ||
|
||
def __len__(self): | ||
return len(self.tokens) | ||
|
||
def _construct_sample(self, tokens): | ||
tokens = np.array(tokens).astype("int64").tolist() | ||
labels = tokens[1:] | ||
tokens = tokens[:-1] | ||
|
||
seq_length = len(tokens) | ||
# attention mask for the attention calulate | ||
attention_mask = np.tri(seq_length, seq_length).reshape( | ||
(1, seq_length, seq_length)) | ||
|
||
# the pad and eod tokens do not contribute the loss | ||
position_ids = np.arange(0, seq_length, dtype="int64") | ||
|
||
# -INF mask value as default | ||
attention_mask = (attention_mask - 1.0) * 1e9 | ||
# Bool mask of attention | ||
attention_mask = attention_mask.astype("float32") | ||
return [tokens, attention_mask, position_ids, labels] | ||
|
||
def __getitem__(self, idx): | ||
tokens = self.tokens[idx][:self.seq_len] | ||
labels = self.labels[idx] | ||
tokens = tokens + labels | ||
num_tokens = len(tokens) | ||
if num_tokens < self.seq_len + 1: | ||
num_pad = (self.seq_len + 1 - num_tokens) | ||
tokens += [self.pad_idx] * num_pad | ||
loss_mask = np.zeros(self.seq_len, dtype="float32") | ||
loss_mask[num_tokens - len(labels) - 1:num_tokens - 1] = 1. | ||
[tokens, attention_mask, position_ids, labels] = self._construct_sample( | ||
tokens) | ||
return [tokens, loss_mask, attention_mask, position_ids, labels] | ||
|
||
|
||
def wikitext_detokenizer(string): | ||
# contractions | ||
string = string.replace("s '", "s'") | ||
string = re.sub(r"/' [0-9]/", r"/'[0-9]/", string) | ||
# number separators | ||
string = string.replace(" @-@ ", "-") | ||
string = string.replace(" @,@ ", ",") | ||
string = string.replace(" @.@ ", ".") | ||
# punctuation | ||
string = string.replace(" : ", ": ") | ||
string = string.replace(" ; ", "; ") | ||
string = string.replace(" . ", ". ") | ||
string = string.replace(" ! ", "! ") | ||
string = string.replace(" ? ", "? ") | ||
string = string.replace(" , ", ", ") | ||
# double brackets | ||
string = re.sub(r"\(\s*([^\)]*?)\s*\)", r"(\1)", string) | ||
string = re.sub(r"\[\s*([^\]]*?)\s*\]", r"[\1]", string) | ||
string = re.sub(r"{\s*([^}]*?)\s*}", r"{\1}", string) | ||
string = re.sub(r"\"\s*([^\"]*?)\s*\"", r'"\1"', string) | ||
string = re.sub(r"'\s*([^']*?)\s*'", r"'\1'", string) | ||
# miscellaneous | ||
string = string.replace("= = = =", "====") | ||
string = string.replace("= = =", "===") | ||
string = string.replace("= =", "==") | ||
string = string.replace(" " + chr(176) + " ", chr(176)) | ||
string = string.replace(" \n", "\n") | ||
string = string.replace("\n ", "\n") | ||
string = string.replace(" N ", " 1 ") | ||
string = string.replace(" 's", "'s") | ||
return string | ||
|
||
|
||
def get_tokens(tokenizer, text, strict=True): | ||
if not strict: | ||
tokens = tokenizer.encode(text) | ||
return tokens[:-1], [tokens[-1]] | ||
last_token = text.split()[-1] | ||
start_idx = text.rfind(last_token) | ||
beginning_tokens = tokenizer.encode(text[:start_idx].strip()) | ||
last_token = tokenizer.encode(' ' + last_token) | ||
return beginning_tokens, last_token | ||
|
||
|
||
def create_eval_dataset(args): | ||
val_dataloader = None | ||
eval_batch_size = args.batch_size | ||
seq_len = args.seq_length | ||
|
||
tokenizer = GPT2Tokenizer.from_pretrained(args.model_name_or_path) | ||
pad_token = tokenizer.command_name_map["pad"].Id | ||
|
||
if not args.cloze_eval: | ||
with open(args.eval_path, "rb") as reader: | ||
entire_data = reader.read().decode('utf-8') | ||
num_original_tokens = len(entire_data.strip().split(" ")) | ||
entire_data = wikitext_detokenizer(entire_data) | ||
tokenized_data = tokenizer.encode(entire_data) | ||
num_tokenized_tokens = len(tokenized_data) | ||
print('Original Tokens: %d, Detokenized tokens: %d' % | ||
(num_tokenized_tokens, num_original_tokens)) | ||
val_dataset = LM_Eval_Dataset(tokenized_data, seq_len, pad_token, | ||
args.overlapping_eval) | ||
else: | ||
tokenized_data = [] | ||
tokenized_label = [] | ||
with open(args.eval_path, 'r') as f: | ||
for line in f.readlines(): | ||
text = json.loads(line)['text'] | ||
tokens, labels = get_tokens(tokenizer, text) | ||
tokenized_data.append(tokens) | ||
tokenized_label.append(labels) | ||
val_dataset = Lambada_Eval_Dataset(tokenized_data, tokenized_label, | ||
seq_len, pad_token) | ||
num_tokenized_tokens = 0 | ||
num_original_tokens = 0 | ||
|
||
args.num_examples = len(val_dataset) | ||
args.num_original_tokens = num_original_tokens | ||
args.num_tokenized_tokens = num_tokenized_tokens | ||
val_dataloader = DataLoader( | ||
val_dataset, | ||
batch_size=eval_batch_size, | ||
drop_last=False, | ||
collate_fn=Tuple(Stack(), Stack(), Stack(), Stack(), Stack())) | ||
|
||
return val_dataloader | ||
|
||
|
||
def do_eval(args): | ||
assert args.device in [ | ||
"cpu", "gpu", "xpu" | ||
], "Invalid device! Available device should be cpu, gpu, or xpu." | ||
paddle.set_device(args.device) | ||
model_class, tokenizer_class = MODEL_CLASSES[args.model_name_or_path] | ||
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path) | ||
|
||
if args.init_checkpoint_path is not None: | ||
model = GPT2ForPretraining( | ||
GPT2Model(**model_class.pretrained_init_configuration[ | ||
args.model_name_or_path])) | ||
|
||
logger.info("Load model checkpoint from %s" % args.init_checkpoint_path) | ||
model_dict = paddle.load(os.path.join(args.init_checkpoint_path)) | ||
model.set_dict(model_dict) | ||
else: | ||
model = model_class.from_pretrained(args.model_name_or_path) | ||
|
||
tic_eval = time.time() | ||
eval_data_loader = create_eval_dataset(args) | ||
model.eval() | ||
total_score = 0 | ||
score_name = "loss" if not args.cloze_eval else "number correct" | ||
with paddle.no_grad(): | ||
for step, batch in enumerate(eval_data_loader): | ||
tokens, loss_mask, attention_mask, position_ids, labels = batch | ||
preds = model(tokens, position_ids, attention_mask) | ||
if not args.cloze_eval: | ||
masked_lm_loss = paddle.nn.functional.cross_entropy( | ||
preds, labels, reduction="none") | ||
loss = paddle.sum(masked_lm_loss * loss_mask) | ||
total_score += loss.numpy() / (args.num_tokenized_tokens - 1) | ||
else: | ||
outputs = paddle.argmax(preds, -1) | ||
acc = paddle.cast(outputs == labels, 'float32') | ||
acc = paddle.where( | ||
paddle.cast(loss_mask, 'bool'), acc, paddle.ones_like(acc)) | ||
acc = paddle.sum(paddle.prod(acc, -1)) | ||
total_score += acc.numpy() | ||
if step % args.logging_steps == 0: | ||
logger.info("step %d, batch: %d, %s: %f, speed: %.2f step/s" % | ||
(step, step, score_name, total_score, | ||
args.logging_steps / (time.time() - tic_eval))) | ||
tic_eval = time.time() | ||
|
||
if not args.cloze_eval: | ||
total_loss = float(total_score) | ||
ppl = math.exp(min(20, total_loss)) | ||
token_ratio = (args.num_tokenized_tokens - 1) / ( | ||
args.num_original_tokens - 1) | ||
adjusted_ppl = math.exp(min(20, total_loss * token_ratio)) | ||
string = ' validation results on {} | '.format(args.eval_path) | ||
string += 'avg loss: {:.4E} | '.format(total_loss) | ||
string += 'ppl: {:.4E} | '.format(ppl) | ||
string += 'adjusted ppl: {:.4E} | '.format(adjusted_ppl) | ||
string += 'token ratio: {} |'.format(token_ratio) | ||
else: | ||
num_correct = float(total_score) | ||
acc = float(num_correct / args.num_examples) | ||
string = ' validation results on {} | '.format(args.eval_path) | ||
string += 'number correct: {:.4E} | '.format(num_correct) | ||
string += 'total examples: {:.4E} | '.format(args.num_examples) | ||
string += 'avg accuracy: {:.4E}'.format(acc) | ||
logger.info(string) | ||
|
||
|
||
if __name__ == "__main__": | ||
args = parser.parse_args() | ||
do_eval(args) |
Oops, something went wrong.