-
Notifications
You must be signed in to change notification settings - Fork 3
Open
Description
221. 最大正方形
Description
Difficulty: 中等
在一个由 '0'
和 '1'
组成的二维矩阵内,找到只包含 '1'
的最大正方形,并返回其面积。
示例 1:
输入:matrix = [["1","0","1","0","0"],["1","0","1","1","1"],["1","1","1","1","1"],["1","0","0","1","0"]]
输出:4
示例 2:
输入:matrix = [["0","1"],["1","0"]]
输出:1
示例 3:
输入:matrix = [["0"]]
输出:0
提示:
m == matrix.length
n == matrix[i].length
1 <= m, n <= 300
matrix[i][j]
为'0'
或'1'
Solution
Language: JavaScript
/**
* @param {character[][]} matrix
* @return {number}
*/
var maximalSquare = function(matrix) {
if(!matrix||matrix.length===0||matrix[0].length===0){
return 0
}
// 1.设一个变量存放最长边
let maxSide = 0;
// 长宽
let row = matrix.length;
let column = matrix[0].length
// 2.声明一个数组来存放每个点的最长边
let dp=[]
for(let i=0;i<row;i++){
dp.push(new Array(column))
}
//3.遍历所有节点
for(let i=0;i<matrix.length;i++){
for(let j=0;j<matrix[i].length;j++){
// 如果当前的节点等于1;
if(matrix[i][j]=='1'){
//且该节点的下标是0 0
if(i==0||j==0){
dp[i][j]=1
}else{
dp[i][j]=Math.min(Math.min(dp[i-1][j],dp[i][j-1]),dp[i-1][j-1])+1
}
}else{
dp[i][j]=0;
}
maxSide = Math.max(dp[i][j],maxSide)
}
}
return Math.pow(maxSide,2)
};
Metadata
Metadata
Assignees
Labels
No labels