GQLite is a graph database for testing abilities in ending device. The target is to make a small, fast, light-weight graph database.
-
- 4.1. Create Graph
- 4.2. Data Types
- 4.3. Add Vertex & Edge
- 4.4. Remove Vertex & Edge
- 4.5. Query
- 4.5.1. intrinct function
- 4.5.2. condition
Use command with git clone --recursive https://github.com/webbery/gqlite.git
to clone this repository.
Install latest version of bison.
# Build type can be Release or Debug. If Build type is `Debug`, 'gcorv' should be install before build.
cmake -DCMAKE_BUILD_TYPE=Release gqlite_root_dir
Install latest version of bison.
An version of flex&bison is placed in dir tool
. So it's not need to install dependency.
C++: 17
Please use cross-compile tools on Ubuntu/MacOS. Some mistakes of libzstd occur on Windows.
An simple example shows how to use in your program is here:
#include "gqlite.h"
int gqlite_exec_callback(gqlite_result* params)
{
if (params) {
switch (params->type)
{
case gqlite_result_type_node:
{
gqlite_node* node = params->nodes;
while (node) {
switch (node->_type)
{
case gqlite_node_type_vertex:
{
gqlite_vertex* v = node->_vertex;
if (v->type == gqlite_id_type::integer) {
printf("[%d, %s]\n", v->uid, v->properties);
}
else {
printf("[%s, %s]\n", v->cid, v->properties);
}
}
break;
case gqlite_node_type_edge:
break;
default:
break;
}
node = node->_next;
}
}
break;
case gqlite_result_type_cmd:
for (size_t idx = 0; idx < params->count; ++idx) {
printf("%s\n", params->infos[idx]);
}
break;
default:
break;
}
}
return 0;
}
int main() {
gqlite* pHandle = 0;
gqlite_open(&pHandle);
char* ptr = nullptr;
gqlite_exec(pHandle,
"{create: 'example_db'};",
gqlite_exec_callback, nullptr, &ptr);
gqlite_free(ptr);
gqlite_close(pHandle);
}
Create a graph is simply use create
keyword. The keyword of group
, means that all entity node which group belongs to. If we want to search vertex by some property, index
keyword will regist it.
{
create: 'movielens',
group: [
{movie: ['title', 'genres']},
{tag: ['user_id', 'tag', 'movie_id'], index: ['tag']}, // <-- relationship's property must write center if it is a edge
{rate: ['user_id', 'rate', 'movie_id']}
]
};
Here we create an index called tag
. The tag
will create revert index from tag
to group tag
's id.
So after upset a new tag, the revert index will be added.
Normaly, basic data type as follows:
string: 'string'
number: 10 means integer, 10.0 means real number.
array: start as [
and end with ]
binary: start with 0b
, then follow as base64 string, it will save as binary data. Such as 0b'df32099'
datetime: start with 0d
, then will try to convert following string to datetime, such as 0d1642262159
vector: a special type of array, which items are same type.
hash: a special type of string, start with 0h
like 0h'hash'
add or update vertex:
{
upset: 'movie',
vertex:[
[21, {'title': 'Get Shorty', genres: ['Comedy', 'Crime', 'Thriller']}],
[53, {title: 'Lamerica (1994)', genres: ['Adventure','Drama']}],
[88, {title: 'Black Sheep (1996)'}]
]
};
Note that current graph is created graph before called movielens
. The 3 of vertexes is added to group movie
.
add or update edge:
{
upset: 'tag',
edge: [
[{user_id: 2}, {'--': 'Martin Scorsese'}, {movie_id: [106782, 89774]}],
[{user_id: 21}, {'--': ['romantic comedy', 'wedding']}, {movie_id: 1569}],
]
};
For simply use, it can be write as follows, but id is automatic generated by database:
{
upset: 'edge',
edge: [
['Tom', ->, 'Lamerica'],
['Kitty', <-, 'Black Sheep'],
]
};
or simply use bidirection:
{
upset: 'tag',
edge: [
['Tom', --, 'Lamerica'],
['Kitty', --, 'Black Sheep'],
]
};
{remove: 'graph', vertex: [21, 88]};
{// this is used to count the number of vertex
query: count(vertex),
group: 'movie'
};
query all movie that has tag:
{
query: [movie.title, movie.genres],
where: [
[user_id, {--: *}, movie_id] // here is an edge condition, user_id and movie_id are in group `tag`, * represent all relationship here.
],
in: 'movielens' // the graph instance can be written here or not.
};
Or:
{
query: movie,
where: {tag: ['black comedy']}
};
query points from graph by relationship:
{
query: user,
where: {
->: 'son'
}
};
{
query: user,
where: [
{
user: function(user) { return user.age > 10}
}
],
};
query a list of neighbors, where 1
mean 1'st neighbors:
{query: user, from: 'v1', where: {--: 1}};
In order to get a search way
Here we define a kind of inference operator, and apply it to a graph.
HMM:
{
query: hidden_variant,
event: [{e1: 'sun'}, {e2: 'rain'}, {e3: 'wind'}],
where: [
[hidden_variant.v1, {->: 0.2}, e1],
[hidden_variant.v2, {->: gassian(0.2, 0.1)}, e2],
[hidden_variant.v3, {->: gassian(0.2, 0.1)}, e3],
[hidden_variant.v1, {->: 0.2}, hidden_variant.v2],
[hidden_variant.v2, {->: 0.2}, hidden_variant.v3],
[hidden_variant.v1, {->: 0.2}, hidden_variant.v4],
]
};
show graph
show graph 'xxx'
use graph 'xxx'
- Yihan Sun, Daniel Ferizovic, Guy E. Belloch. PAM: Parallel Augmented Maps.
- Laxman Dhulipala, Guy Blelloch, Yan Gu, Yihan Sun. PaC-trees: Supporting Parallel and Compressed Purely-Functional Collections.
- Amine Ghrab, Oscar Romero, Sabri Skhiri etc. GRAD: On Graph Database Modeling.
- 向量索引算法HNSW和NSG的比较
- Daniel Lemirea, Leonid Boytsov. Decoding billions of integers per second through vectorization.
- Thorup Mikkel. Undirected single-source shortest paths with positive integer weights in linear time.
- Xuanhua Shi, Xuan Luo, Junling Liang etc. Frog: Asynchronous Graph Processing on GPU with Hybrid Coloring Model.
- Xuanhua Shi, Zhigao Zheng, Yongluan Zhou etc. Graph Processing on GPUs: A Survey.
- Merrill Duane, Garland Michael, Grimshaw Andrew. High-Performance and Scalable GPU Graph Traversal.
- Sakr Sherif, Pardede Eric. Graph Data Management: Techniques and Applications.