Skip to content

Commit

Permalink
[diar] merge voxconverse v3 into v2 and update results in README.md (#…
Browse files Browse the repository at this point in the history
…352)

* [diar] deprecate silero-vad v3.1 in v1

* [diar] 1. deprecate silero-vad v3.1 in v2; 2. add the "cluster_type" parameter and merge v3 into v2;

* [diar] update README.md for voxconverse repices

* [diar] update README.md

* [diar] update voxconverse/v2/run.sh

* [docs] update README.md
  • Loading branch information
JiJiJiang authored Aug 26, 2024
1 parent 91aceec commit f66dca8
Show file tree
Hide file tree
Showing 12 changed files with 48 additions and 259 deletions.
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ pre-commit install # for clean and tidy code
```

## 🔥 News
* 2024.08.20: Update diarization recipe for VoxConverse dataset by leveraging umap dimensionality reduction and hdbscan clustering, see [#347](https://github.com/wenet-e2e/wespeaker/pull/347).
* 2024.08.20: Update diarization recipe for VoxConverse dataset by leveraging umap dimensionality reduction and hdbscan clustering, see [#347](https://github.com/wenet-e2e/wespeaker/pull/347) and [#352](https://github.com/wenet-e2e/wespeaker/pull/352).
* 2024.08.18: Support using ssl pre-trained models as the frontend. The [WavLM recipe](https://github.com/wenet-e2e/wespeaker/blob/master/examples/voxceleb/v2/run_wavlm.sh) is also provided, see [#344](https://github.com/wenet-e2e/wespeaker/pull/344).
* 2024.05.15: Add support for [quality-aware score calibration](https://arxiv.org/pdf/2211.00815), see [#320](https://github.com/wenet-e2e/wespeaker/pull/320).
* 2024.04.25: Add support for the gemini-dfresnet model, see [#291](https://github.com/wenet-e2e/wespeaker/pull/291).
Expand Down
4 changes: 4 additions & 0 deletions examples/voxconverse/README.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,7 @@
This is a **WeSpeaker** speaker diarization recipe on the Voxconverse 2020 dataset. It focused on a ``in the wild`` scenario, which was collected from YouTube videos with a semi-automatic pipeline and released for the diarization track in VoxSRC 2020 Challenge. See https://www.robots.ox.ac.uk/~vgg/data/voxconverse/ for more detailed information.

Two recipes are provided, including **v1** and **v2**. Their only difference is that in **v2**, we split the Fbank extraction, embedding extraction and clustering modules to different stages. We recommend newcomers to follow the **v2** recipe and run it stage by stage.

🔥 UPDATE 2024.08.20:
* silero-vad v5.1 is used in place of v3.1
* umap dimensionality reduction + hdbscan clustering is also supported in v2
12 changes: 7 additions & 5 deletions examples/voxconverse/v1/README.md
Original file line number Diff line number Diff line change
@@ -1,11 +1,13 @@
## Overview

* We suggest to run this recipe on a gpu-available machine, with onnxruntime-gpu supported.
* Dataset: voxconverse_dev that consists of 216 utterances
* Speaker model: ResNet34 model pretrained by wespeaker
* Dataset: Voxconverse2020 (dev: 216 utts)
* Speaker model: ResNet34 model pretrained by WeSpeaker
* Refer to [voxceleb sv recipe](https://github.com/wenet-e2e/wespeaker/tree/master/examples/voxceleb/v2)
* [pretrained model path](https://wespeaker-1256283475.cos.ap-shanghai.myqcloud.com/models/voxceleb/voxceleb_resnet34_LM.onnx)
* Speaker activity detection model: oracle SAD (from ground truth annotation) or system SAD (VAD model pretrained by silero, https://github.com/snakers4/silero-vad)
* Speaker activity detection model:
* oracle SAD (from ground truth annotation)
* system SAD (VAD model pretrained by [silero-vad](https://github.com/snakers4/silero-vad), v3.1 is deprecated now)
* Clustering method: spectral clustering
* Metric: DER = MISS + FALSE ALARM + SPEAKER CONFUSION (%)

Expand All @@ -15,8 +17,8 @@

| system | MISS | FA | SC | DER |
|:---|:---:|:---:|:---:|:---:|
| This repo (with oracle SAD) | 2.3 | 0.0 | 1.9 | 4.2 |
| This repo (with system SAD) | 3.7 | 0.8 | 2.0 | 6.5 |
| Ours (oracle SAD + spectral clustering) | 2.3 | 0.0 | 1.9 | 4.2 |
| Ours (silero-vad v3.1 + spectral clustering) | 3.7 | 0.8 | 2.0 | 6.5 |
| DIHARD 2019 baseline [^1] | 11.1 | 1.4 | 11.3 | 23.8 |
| DIHARD 2019 baseline w/ SE [^1] | 9.3 | 1.3 | 9.7 | 20.2 |
| (SyncNet ASD only) [^1] | 2.2 | 4.1 | 4.0 | 10.4 |
Expand Down
5 changes: 2 additions & 3 deletions examples/voxconverse/v1/run.sh
Original file line number Diff line number Diff line change
Expand Up @@ -29,8 +29,8 @@ if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
unzip -o external_tools/SCTK-v2.4.12.zip -d external_tools

# [2] Download voice activity detection model pretrained by Silero Team
wget -c https://github.com/snakers4/silero-vad/archive/refs/tags/v3.1.zip -O external_tools/silero-vad-v3.1.zip
unzip -o external_tools/silero-vad-v3.1.zip -d external_tools
#wget -c https://github.com/snakers4/silero-vad/archive/refs/tags/v3.1.zip -O external_tools/silero-vad-v3.1.zip
#unzip -o external_tools/silero-vad-v3.1.zip -d external_tools

# [3] Download ResNet34 speaker model pretrained by WeSpeaker Team
mkdir -p pretrained_models
Expand Down Expand Up @@ -79,7 +79,6 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
if [[ "x${sad_type}" == "xsystem" ]]; then
# System SAD: applying 'silero' VAD
python3 wespeaker/diar/make_system_sad.py \
--repo-path external_tools/silero-vad-3.1 \
--scp data/dev/wav.scp \
--min-duration $min_duration > data/dev/system_sad
fi
Expand Down
25 changes: 18 additions & 7 deletions examples/voxconverse/v2/README.md
Original file line number Diff line number Diff line change
@@ -1,12 +1,16 @@
## Overview

* We suggest to run this recipe on a gpu-available machine, with onnxruntime-gpu supported.
* Dataset: voxconverse_dev that consists of 216 utterances
* Speaker model: ResNet34 model pretrained by wespeaker
* Dataset: Voxconverse2020 (dev: 216 utts, test: 232 utts)
* Speaker model: ResNet34 model pretrained by WeSpeaker
* Refer to [voxceleb sv recipe](https://github.com/wenet-e2e/wespeaker/tree/master/examples/voxceleb/v2)
* [pretrained model path](https://wespeaker-1256283475.cos.ap-shanghai.myqcloud.com/models/voxceleb/voxceleb_resnet34_LM.onnx)
* Speaker activity detection model: oracle SAD (from ground truth annotation) or system SAD (VAD model pretrained by silero, https://github.com/snakers4/silero-vad)
* Clustering method: spectral clustering
* Speaker activity detection model:
* oracle SAD (from ground truth annotation)
* system SAD (VAD model pretrained by [silero-vad](https://github.com/snakers4/silero-vad), v3.1 => v5.1)
* Clustering method:
* spectral clustering
* umap dimensionality reduction + hdbscan clustering
* Metric: DER = MISS + FALSE ALARM + SPEAKER CONFUSION (%)

## Results
Expand All @@ -15,8 +19,11 @@

| system | MISS | FA | SC | DER |
|:---|:---:|:---:|:---:|:---:|
| This repo (with oracle SAD) | 2.3 | 0.0 | 2.1 | 4.4 |
| This repo (with system SAD) | 3.7 | 0.8 | 2.2 | 6.8 |
| Ours (oracle SAD + spectral clustering) | 2.3 | 0.0 | 2.1 | 4.4 |
| Ours (oracle SAD + umap clustering) | 2.3 | 0.0 | 1.3 | 3.6 |
| Ours (silero-vad v3.1 + spectral clustering) | 3.7 | 0.8 | 2.2 | 6.7 |
| Ours (silero-vad v5.1 + spectral clustering) | 3.4 | 0.6 | 2.3 | 6.3 |
| Ours (silero-vad v5.1 + umap clustering) | 3.4 | 0.6 | 1.4 | 5.4 |
| DIHARD 2019 baseline [^1] | 11.1 | 1.4 | 11.3 | 23.8 |
| DIHARD 2019 baseline w/ SE [^1] | 9.3 | 1.3 | 9.7 | 20.2 |
| (SyncNet ASD only) [^1] | 2.2 | 4.1 | 4.0 | 10.4 |
Expand All @@ -27,7 +34,11 @@

| system | MISS | FA | SC | DER |
|:---|:---:|:---:|:---:|:---:|
| This repo (with system SAD) | 4.0 | 2.4 | 3.4 | 9.8 |
| Ours (oracle SAD + spectral clustering) | 1.6 | 0.0 | 3.3 | 4.9 |
| Ours (oracle SAD + umap clustering) | 1.6 | 0.0 | 1.9 | 3.5 |
| Ours (silero-vad v3.1 + spectral clustering) | 4.0 | 2.4 | 3.4 | 9.8 |
| Ours (silero-vad v5.1 + spectral clustering) | 3.8 | 1.7 | 3.3 | 8.8 |
| Ours (silero-vad v5.1 + umap clustering) | 3.8 | 1.7 | 1.8 | 7.3 |


[^1]: Spot the conversation: speaker diarisation in the wild, https://arxiv.org/pdf/2007.01216.pdf
35 changes: 16 additions & 19 deletions examples/voxconverse/v2/run.sh
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
#!/bin/bash
# Copyright (c) 2022-2023 Xu Xiang
# 2022 Zhengyang Chen (chenzhengyang117@gmail.com)
# 2024 Hongji Wang (jijijiang77@gmail.com)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
Expand All @@ -18,8 +19,9 @@

stage=-1
stop_stage=-1
sad_type="oracle"
partition="dev"
sad_type="oracle" # oracle/system
partition="dev" # dev/test
cluster_type="spectral" # spectral/umap

# do cmn on the sub-segment or on the vad segment
subseg_cmn=true
Expand All @@ -36,11 +38,7 @@ if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
wget -c https://github.com/usnistgov/SCTK/archive/refs/tags/v2.4.12.zip -O external_tools/SCTK-v2.4.12.zip
unzip -o external_tools/SCTK-v2.4.12.zip -d external_tools

# [2] Download voice activity detection model pretrained by Silero Team
wget -c https://github.com/snakers4/silero-vad/archive/refs/tags/v3.1.zip -O external_tools/silero-vad-v3.1.zip
unzip -o external_tools/silero-vad-v3.1.zip -d external_tools

# [3] Download ResNet34 speaker model pretrained by WeSpeaker Team
# [2] Download ResNet34 speaker model pretrained by WeSpeaker Team
mkdir -p pretrained_models

wget -c https://wespeaker-1256283475.cos.ap-shanghai.myqcloud.com/models/voxceleb/voxceleb_resnet34_LM.onnx -O pretrained_models/voxceleb_resnet34_LM.onnx
Expand Down Expand Up @@ -101,7 +99,6 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
if [[ "x${sad_type}" == "xsystem" ]]; then
# System SAD: applying 'silero' VAD
python3 wespeaker/diar/make_system_sad.py \
--repo-path external_tools/silero-vad-3.1 \
--scp data/${partition}/wav.scp \
--min-duration $min_duration > data/${partition}/system_sad
fi
Expand Down Expand Up @@ -144,24 +141,24 @@ if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
fi


# Applying spectral clustering algorithm
# Applying spectral or ump+hdbscan clustering algorithm
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then

[ -f "exp/spectral_cluster/${partition}_${sad_type}_sad_labels" ] && rm exp/spectral_cluster/${partition}_${sad_type}_sad_labels
[ -f "exp/${cluster_type}_cluster/${partition}_${sad_type}_sad_labels" ] && rm exp/${cluster_type}_cluster/${partition}_${sad_type}_sad_labels

echo "Doing spectral clustering and store the result in exp/spectral_cluster/${partition}_${sad_type}_sad_labels"
echo "Doing ${cluster_type} clustering and store the result in exp/${cluster_type}_cluster/${partition}_${sad_type}_sad_labels"
echo "..."
python3 wespeaker/diar/spectral_clusterer.py \
python3 wespeaker/diar/${cluster_type}_clusterer.py \
--scp exp/${partition}_${sad_type}_sad_embedding/emb.scp \
--output exp/spectral_cluster/${partition}_${sad_type}_sad_labels
--output exp/${cluster_type}_cluster/${partition}_${sad_type}_sad_labels
fi


# Convert labels to RTTMs
if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
python3 wespeaker/diar/make_rttm.py \
--labels exp/spectral_cluster/${partition}_${sad_type}_sad_labels \
--channel 1 > exp/spectral_cluster/${partition}_${sad_type}_sad_rttm
--labels exp/${cluster_type}_cluster/${partition}_${sad_type}_sad_labels \
--channel 1 > exp/${cluster_type}_cluster/${partition}_${sad_type}_sad_rttm
fi


Expand All @@ -173,18 +170,18 @@ if [ ${stage} -le 8 ] && [ ${stop_stage} -ge 8 ]; then
perl external_tools/SCTK-2.4.12/src/md-eval/md-eval.pl \
-c 0.25 \
-r <(cat ${ref_dir}/${partition}/*.rttm) \
-s exp/spectral_cluster/${partition}_${sad_type}_sad_rttm 2>&1 | tee exp/spectral_cluster/${partition}_${sad_type}_sad_res
-s exp/${cluster_type}_cluster/${partition}_${sad_type}_sad_rttm 2>&1 | tee exp/${cluster_type}_cluster/${partition}_${sad_type}_sad_res

if [ ${get_each_file_res} -eq 1 ];then
single_file_res_dir=exp/spectral_cluster/${partition}_${sad_type}_single_file_res
single_file_res_dir=exp/${cluster_type}_cluster/${partition}_${sad_type}_single_file_res
mkdir -p $single_file_res_dir
echo -e "\nGet the DER results for each file and the results will be stored underd ${single_file_res_dir}\n..."

awk '{print $2}' exp/spectral_cluster/${partition}_${sad_type}_sad_rttm | sort -u | while read file_name; do
awk '{print $2}' exp/${cluster_type}_cluster/${partition}_${sad_type}_sad_rttm | sort -u | while read file_name; do
perl external_tools/SCTK-2.4.12/src/md-eval/md-eval.pl \
-c 0.25 \
-r <(cat ${ref_dir}/${partition}/${file_name}.rttm) \
-s <(grep "${file_name}" exp/spectral_cluster/${partition}_${sad_type}_sad_rttm) > ${single_file_res_dir}/${partition}_${file_name}_res
-s <(grep "${file_name}" exp/${cluster_type}_cluster/${partition}_${sad_type}_sad_rttm) > ${single_file_res_dir}/${partition}_${file_name}_res
done
echo "Done!"
fi
Expand Down
34 changes: 0 additions & 34 deletions examples/voxconverse/v3/README.md

This file was deleted.

1 change: 0 additions & 1 deletion examples/voxconverse/v3/local

This file was deleted.

1 change: 0 additions & 1 deletion examples/voxconverse/v3/path.sh

This file was deleted.

Loading

0 comments on commit f66dca8

Please sign in to comment.