forked from PaddlePaddle/PaddleMIX
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
新增音频生成图像(Audio-to-Image Generation) gradio demo (PaddlePaddle#365)
完成pipeline验证有效 PaddlePaddle#258 PaddlePaddle#272
- Loading branch information
Showing
1 changed file
with
135 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,135 @@ | ||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import argparse | ||
from types import SimpleNamespace | ||
|
||
import gradio as gr | ||
import paddle | ||
|
||
from paddlemix import ImageBindModel, ImageBindProcessor | ||
from paddlemix.utils.log import logger | ||
from ppdiffusers import StableUnCLIPImg2ImgPipeline | ||
|
||
ModalityType = SimpleNamespace( | ||
VISION="vision", | ||
TEXT="text", | ||
AUDIO="audio", | ||
THERMAL="thermal", | ||
DEPTH="depth", | ||
IMU="imu", | ||
) | ||
|
||
|
||
class Predictor: | ||
def __init__(self, model_args): | ||
self.processor = ImageBindProcessor.from_pretrained(model_args.model_name_or_path) | ||
self.predictor = ImageBindModel.from_pretrained(model_args.model_name_or_path) | ||
self.predictor.eval() | ||
|
||
def run(self, inputs): | ||
with paddle.no_grad(): | ||
embeddings = self.predictor(inputs) | ||
return embeddings | ||
|
||
|
||
def model_init(model_args): | ||
predictor = Predictor(model_args) | ||
return predictor | ||
|
||
|
||
def infer(input_image, input_audio, input_text): | ||
|
||
global predictor | ||
image_pil = input_image | ||
|
||
encoding = predictor.processor(images=image_pil, text="", audios=input_audio, return_tensors="pd") | ||
inputs = {} | ||
|
||
if image_pil is not None: | ||
image_processor = encoding["pixel_values"] | ||
inputs.update({ModalityType.VISION: image_processor}) | ||
|
||
if input_audio is not None: | ||
audio_processor = encoding["audio_values"] | ||
inputs.update({ModalityType.AUDIO: audio_processor}) | ||
else: | ||
pass | ||
|
||
embeddings = predictor.run(inputs) | ||
image_proj_embeds = embeddings[ModalityType.AUDIO] | ||
|
||
if image_pil is not None: | ||
logger.info("Generate vision embedding: {}".format(embeddings[ModalityType.VISION])) | ||
image_proj_embeds += embeddings[ModalityType.VISION] | ||
|
||
logger.info("Generate audio embedding: {}".format(embeddings[ModalityType.AUDIO])) | ||
|
||
if input_text is not None: | ||
prompt = input_text | ||
else: | ||
prompt = "" | ||
|
||
pipe = StableUnCLIPImg2ImgPipeline.from_pretrained(model_args.stable_unclip_model_name_or_path) | ||
pipe.set_progress_bar_config(disable=None) | ||
output = pipe(image_embeds=image_proj_embeds, prompt=prompt) | ||
|
||
return output.images[0] | ||
|
||
|
||
def parse_arguments(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--model_name_or_path", | ||
type=str, | ||
default="imagebind-1.2b/", | ||
help="Path to pretrained model or model identifier", | ||
) | ||
parser.add_argument( | ||
"--stable_unclip_model_name_or_path", | ||
type=str, | ||
default="stabilityai/stable-diffusion-2-1-unclip", | ||
help="Path to pretrained model or model identifier in stable_unclip_model_name_or_path", | ||
) | ||
parser.add_argument( | ||
"--device", | ||
type=str, | ||
default="GPU", | ||
choices=["CPU", "GPU", "XPU"], | ||
help="Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU.", | ||
) | ||
return parser.parse_args() | ||
|
||
|
||
with gr.Blocks() as demo: | ||
gr.Markdown("音频生成图像(Audio-to-Image Generation)") | ||
with gr.Row(): | ||
with gr.Column(): | ||
input_audio = gr.Audio(label="input audio", type="filepath") | ||
with gr.Tab(label="input text(可选)") as txttab: | ||
input_text = gr.Textbox(label="input text") | ||
with gr.Tab(label="input image(可选)") as imgtab: | ||
input_image = gr.Image(label="input image") | ||
infer_button = gr.Button("推理") | ||
output_image = gr.Image(label="result") | ||
txttab.select(fn=lambda: None, outputs=input_image) | ||
imgtab.select(fn=lambda: None, outputs=input_text) | ||
infer_button.click(fn=infer, inputs=[input_image, input_audio, input_text], outputs=[output_image]) | ||
if __name__ == "__main__": | ||
|
||
model_args = parse_arguments() | ||
assert model_args.device in ["CPU", "GPU", "XPU", "NPU"], "device should be CPU, GPU, XPU or NPU" | ||
predictor = model_init(model_args) | ||
|
||
demo.launch() |