Skip to content

Best TTS based on BERT and VITS with some Natural Speech Features Of Microsoft; Also for voice clone!

Notifications You must be signed in to change notification settings

whh07141/vits_chinese

 
 

Repository files navigation

Best TTS based on BERT and VITS with some Natural Speech Features Of Microsoft

vits_bert.mp4

Based on BERT, NaturalSpeech, VITS

Features

1, Hidden prosody embedding from BERT,get natural pauses in grammar

2, Infer loss from NaturalSpeech,get less sound error

3, Framework of VITS,get high audio quality

Online demo

https://huggingface.co/spaces/maxmax20160403/vits_chinese

Install

pip install -r requirements.txt

cd monotonic_align

python setup.py build_ext --inplace

Infer with Pretrained model

BaiduYun: https://pan.baidu.com/s/1Cj4MnwFyZ0XZmTR6EpygbQ?pwd=yn60

Google: https://drive.google.com/drive/folders/1sioiNpebOLyCmHURgOgJ7ppWI7b-7Rb5?usp=sharing

Or get from release page

put prosody_model.pt To ./bert/prosody_model.pt

put vits_bert_model.pth To ./vits_bert_model.pth

python vits_infer.py --config ./configs/bert_vits.json --model vits_bert_model.pth

./vits_infer_out have the waves infered, listen !!!

Train

download baker data: https://www.data-baker.com/data/index/TNtts/

change sample rate of waves, and put waves to ./data/waves

put 000001-010000.txt to ./data/000001-010000.txt

python vits_prepare.py -c ./configs/bert_vits.json

python train.py -c configs/bert_vits.json -m bert_vits

bert_lose

Model compression based on knowledge distillation

Student model has 53M size and 3× speed of teacher model.

To train:

python train.py -c configs/bert_vits_student.json -m bert_vits_student

To infer, get studet model at release page or

Google: :https://drive.google.com/file/d/1hTLWYEKH4GV9mQltrMyr3k2UKUo4chdp/view?usp=sharing

python vits_infer.py --config ./configs/bert_vits_student.json --model vits_bert_student.pth

You can use vits_istft as a student model too.

https://github.com/PlayVoice/vits_chinese/tree/vits_istft

Video text

天空呈现的透心的蓝,像极了当年。总在这样的时候,透过窗棂,心,在天空里无尽的游弋!柔柔的,浓浓的,痴痴的风,牵引起心底灵动的思潮;情愫悠悠,思情绵绵,风里默坐,红尘中的浅醉,诗词中的优柔,任那自在飞花轻似梦的情怀,裁一束霓衣,织就清浅淡薄的安寂。

风的影子翻阅过淡蓝色的信笺,柔和的文字浅浅地漫过我安静的眸,一如几朵悠闲的云儿,忽而氤氲成汽,忽而修饰成花,铅华洗尽后的透彻和靓丽,爽爽朗朗,轻轻盈盈

时光仿佛有穿越到了从前,在你诗情画意的眼波中,在你舒适浪漫的暇思里,我如风中的思绪徜徉广阔天际,仿佛一片沾染了快乐的羽毛,在云环影绕颤动里浸润着风的呼吸,风的诗韵,那清新的耳语,那婉约的甜蜜,那恬淡的温馨,将一腔情澜染得愈发的缠绵。

Reference For TTS

Microsoft's NaturalSpeech: End-to-End Text to Speech Synthesis with Human-Level Quality

https://github.com/Executedone/Chinese-FastSpeech2

https://github.com/jaywalnut310/vits

Voice Clone

vits_clone

TODO ~

Reference For Voice Clone

Speak, Read and Prompt:High-Fidelity Text-to-Speech with Minimal Supervision

HierSpeech: Bridging the Gap between Text andSpeech by Hierarchical Variational Inference usingSelf-supervised Representations for Speech Synthesis

Transfer Learning Framework for Low-Resource Text-to-Speech using a Large-Scale Unlabeled Speech Corpus

AdaVITS: Tiny VITS for Low Computing Resource Speaker Adaptation

Adapter-Based Extension of Multi-Speaker Text-to-Speech Model for New Speakers

Residual Adapters for Few-Shot Text-to-Speech Speaker Adaptation

https://github.com/collabora/spear-tts-pytorch

https://github.com/CODEJIN/HierSpeech

About

Best TTS based on BERT and VITS with some Natural Speech Features Of Microsoft; Also for voice clone!

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.3%
  • Cython 0.7%