$ dbcp --help
cli.js [inputFile] [outputFile]
$ dbcp data.parquet data.jsonl.gz
$ dbcp data.jsonl.gz s3://bucket/data.csv.gz
Copy from or to MySQL, PostgreSQL, SQLServer, LevelDB, MongoDB, and ElasticSearch directly to/from files on Amazon Web Services (AWS) S3, Google Cloud Storage (GCS), Microsoft Azure, SMB, HTTP, or another database.
Automatically converts between supported formats JSON, ND-JSON, CSV, SQL, Parquet, and TFRecord (with optional gzip compression).
Either --inputType
or --inputFile
and --outputType
or --outputFile
are required. Other options can be shortened, e.g --user
instead of --inputUser
. Only a database-to-database copy requires both --inputUser
and --outputUser
. The file format and compression is inferred from the filename.
dbcp
pipes Readable Node.JS streams to Writable streams. No intermediate storage is required.
- The
transformObject
/transformObjectStream
API can be used for streaming transforms of Big Data. - The CLI uses
transformBytes
/transformBytesStream
to render progress updates.
dbcp
supports sharding. It can split or join groups of files.dbcp
can convert files from one format to another.dbcp
supports compound inserts, which can insert groups of associated rows from multiple tables.dbcp
can translate SQL dialects, e.g. dump a Postgres table to .sql file with SQLServer CREATE and INSERT syntax.
- Database powered by knex and knex-schema-inspector
- File system, file formats, and sharding provided by @wholebuzz/fs
- External file sorting with external-sorting
- Connected using the tree-stream primitives
ReadableStreamTree
andWritableStreamTree
- Used to implement @wholebuzz/mapreduce
$ npm install -g dbcp
$ dbcp --help
$ npm init
$ npm install dbcp
$ ./node_modules/.bin/dbcp --help
import { AnyFileSystem } from '@wholebuzz/fs/lib/fs'
import { LocalFileSystem } from '@wholebuzz/fs/lib/local'
import { S3FileSystem } from '@wholebuzz/fs/lib/s3'
import { dbcp } from 'dbcp'
import StreamTree from 'tree-stream'
const fileSystem = new AnyFileSystem([
{ urlPrefix: 's3://', fs: new S3FileSystem() },
{ urlPrefix: '', fs: new LocalFileSystem() }
])
await dbcp({
fileSystem,
outputFile: 's3://foo/bar.jsonl',
// e.g. from level (https://www.npmjs.com/package/level)) database
inputStream: StreamTree.readable(levelIteratorStream(leveldb.iterator())),
})
import { openNullWritable } from '@wholebuzz/fs/lib/stream'
import { dbcp } from 'dbcp'
import { Transform } from 'stream'
// Supply transformObject and a do-nothing Writable for outputStream.
await dbcp({
fileSystem,
inputFiles: [ { url: '/tmp/foobar.csv.gz' } ],
outputStream: [ openNullWritable() ],
transformObject: (x) => { console.log('test', x) },
})
// Or alternatively supply outputStream with outputFormat = object
await dbcp({
fileSystem,
inputFiles: [ { url: '/tmp/foobar.csv.gz' } ],
// Without outputFormat = object, transform() would receive Buffer
outputFormat: DatabaseCopyFormat.object,
outputStream: [
StreamTree.writable(new Transform({
objectMode: true,
transform(data, _, cb) {
console.log('test', data)
cb()
},
}))
],
})
- Copy PostgreSQL table to Google Cloud Storage gzipped JSON file
- Copy MySQL table to Amazon Web Services S3 gzipped JSON-Lines file
- Copy Amazon Web Services S3 gzipped JSON-Lines to MySQL table
- Copy MongoDB table to four gzipped JSON-Lines shards
- Copy SQLServer table to stdout
- Output a file or database to stdout
- Copy a file from AWS to GCP
- Convert file from ND-JSON to JSON
- Download a file
- Post a file to HTTP endpoint
- Create Athena DDL from JSON sample
- Create Postgres CREATE TABLE from JSON sample
- Split the test data file into four shards
- Join the split files back into one
PASS src/index.test.ts (85.9 s)
âś“ Should hash test data as string
âś“ Should hash test data stream
âś“ Should copy local file
âś“ Should read local directory
âś“ Should convert to JSON from ND-JSON and back
âś“ Should convert to sharded JSON from ND-JSON and back
âś“ Should convert to Parquet from ND-JSON and back
âś“ Should convert to TFRecord from ND-JSON and back
âś“ Should load to level from ND-JSON and dump to JSON after external sort
âś“ Should restore to and dump compound data
âś“ Should restore to and dump from Elastic Search to ND-JSON
âś“ Should restore to and dump from MongoDB to ND-JSON
âś“ Should restore to and dump from Postgres to ND-JSON
âś“ Should restore to and dump from Postgres to SQL
âś“ Should not hang on error
âś“ Should copy from Postgres to Mysql
âś“ Should copy from Postgres to SQL Server
âś“ Should dump from Postgres to Parquet file
âś“ Should dump from MySQL to Parquet file
âś“ Should dump from SQL Server to Parquet file
export async function dbcp(args: DatabaseCopyOptions)
export interface DatabaseCopyOptions {
batchSize?: number
columnType?: Record<string, string>
compoundInsert?: boolean
contentType?: string
copySchema?: DatabaseCopySchema
engineOptions?: any
externalSortBy?: string[]
extra?: Record<string, any>
extraOutput?: boolean
fileSystem?: FileSystem
group?: boolean
groupLabels?: boolean
limit?: number
orderBy?: string[]
probeBytes?: number
query?: string
shardBy?: string
schema?: Column[]
schemaFile?: string
tempDirectories?: string[]
transformObject?: (x: unknown) => unknown | Promise<unknown>
transformObjectStream?: () => Duplex
transformBytes?: (x: string) => string
transformBytesStream?: () => Duplex
where?: Array<string | any[]>
}
$ dbcp --help
cli.js [inputFile] [outputFile]
Options:
--help Show help [boolean]
--version Show version number [boolean]
--compoundInsert Compound insert mode can insert associated rows from
multiple tables. [boolean]
--contentType Content type [string]
--dataOnly Dump only the data, not the schema (data definitions).
[boolean]
--dbname Database [string]
--externalSortBy Sort data by property(s) with external-sorting [array]
--format
[choices: "csv", "json", "jsonl", "ndjson", "object", "parquet", "tfrecord",
"sql"]
--group Group inputs with equinvalent orderBy [boolean]
--host Database host [string]
--inputFile Input file [array]
--inputFormat
[choices: "csv", "json", "jsonl", "ndjson", "object", "parquet", "tfrecord",
"sql"]
--inputHost Input host [string]
--inputName Input database [string]
--inputPassword Input database password [string]
--inputPort Input database port [string]
--inputShards Input shards [number]
--inputTable Input database table [string]
--inputType Input database type
[string] [choices: "athena", "elasticsearch", "file", "http", "level",
"mongodb", "mssql", "mysql", "postgresql", "redis", "sqlite"]
--inputUser Input database user [string]
--limit Database query LIMIT [number]
--orderBy Database query ORDER BY [array]
--outputFile Output file [string]
--outputFormat
[choices: "csv", "json", "jsonl", "ndjson", "object", "parquet", "tfrecord",
"sql"]
--outputHost Output host [string]
--outputName Output database [string]
--outputPassword Output database password [string]
--outputPort Output database port [string]
--outputShards Output shards [number]
--outputTable Output database table [string]
--outputType Output database type
[string] [choices: "athena", "elasticsearch", "file", "http", "level",
"mongodb", "mssql", "mysql", "postgresql", "redis", "sqlite"]
--outputUser Output database user [string]
--password Database password [string]
--port Database port [string]
--probeBytes Probe bytes [number]
--query Query [string]
--schemaFile Use schema file if required, instead of schema inspection.
[string]
--schemaOnly Dump only the object definitions (schema), not data.
[boolean]
--shardBy Shard (or split) the data based on key [string]
--shards The number of shards to split or join the data [number]
--table Database table [string]
--user Database user [string]
--where Database query WHERE [array]
--whereDate Database query WHERE, final argument parsed as Javascript
date [array]
$ dbcp \
--inputType postgresql \
--host localhost \
--dbname postgres \
--port 5433 \
--user postgres \
--password postgres \
--table foobar \
--outputFile gs://bucket/file.json.gz
$ dbcp \
--inputType mysql \
--host localhost \
--dbname mydb \
--port 8083 \
--user root \
--password wp \
--table foobar \
--format jsonl \
--outputFile s3://bucket/object.jsonl.gz
$ dbcp \
--outputType mysql \
--host localhost \
--dbname mydb \
--port 8083 \
--user root \
--password wp \
--table foobar \
--inputFile s3://bucket/object.jsonl.gz
$ dbcp \
--inputType mssql \
--host localhost \
--dbname mymsdb \
--port 1433 \
--user SA \
--password "MyP@ssw0rd#" \
--table foobar \
--outputFile=-
$ dbcp \
--inputType mongodb \
--host localhost \
--port 27017 \
--user root \
--password example \
--dbname test_db \
--table dbcptest \
--outputFile output-SSSS-of-NNNN.jsonl.gz \
--outputShards 4 \
--shardBy id
$ ls output*
-rw-r--r-- 1 user staff 782701 Feb 4 10:59 output-0001-of-0004.jsonl.gz
-rw-r--r-- 1 user staff 771980 Feb 4 10:59 output-0003-of-0004.jsonl.gz
-rw-r--r-- 1 user staff 794959 Feb 4 10:59 output-0000-of-0004.jsonl.gz
-rw-r--r-- 1 user staff 788720 Feb 4 10:59 output-0002-of-0004.jsonl.gz
$ dbcp gs://bucket/archive.csv.gz | jq . | less
$ dbcp s3://bucket/object.json.gz gs://bucket/file.json.gz
$ dbcp foobar.jsonl bazbat.json
$ dbcp "https://www.w3.org/People/mimasa/test/imgformat/img/w3c_home.png" foo.png
$ dbcp "./foo.png" "http://my.api/upload" --contentType "image/png"
$ dbcp --schemaOnly --inputFile ./sample.jsonl.gz --outputType athena --outputFile ddl.sql
$ dbcp --schemaOnly --inputFile ./sample.jsonl.gz --outputType postgresql --outputFile ddl.sql
Split the test data file into four shards:
$ dbcp ./test/test.jsonl.gz ./split-SSSS-of-NNNN.jsonl.gz --outputShards 4 --shardBy guid
$ dbcp ./split-SSSS-of-NNNN.jsonl.gz ./joined.jsonl.gz --inputShards 4 --orderBy id
dbcp / Exports