Skip to content
Yong Yuan edited this page Apr 7, 2017 · 1 revision

PCA使用数据源对CDW的影响

实验过程中,发现PCA使用不同数据源对CDW的影响是比较大的。下面是PCA采用不同数据源对CDW的影响实验,实验在oxford上进行,评鉴准则采用mAP。

实验设置:crop、no query expansion、do PCA

数据源 维度 mAP
oxford 512 60.2155%
oxford 256 64.3746%
oxford 128 66.9665%
oxford 64 64.3458%
oxford 32 58.0331%
数据源 维度 mAP
paris 512 70.8359%
paris 256 69.6122%
paris 128 64.0718%
paris 64 58.4009%
paris 32 52.5268%

mAP在小数点后又微小浮动。

no crop对特征的影响

实验设置:no crop、no query expansion, do PCA

数据源 维度 mAP
oxford 512 59.9517%
oxford 256 64.3746%
oxford 128 66.9665%
oxford 64 64.3458%
oxford 32 58.0331%

qe对特征的影响

实验设置:no crop、query expansion、do PCA

top@K 维度 mAP
0 512 59.9517%
1 512 59.9517%
2 512 63.7079%
3 512 65.6768%
4 512 66.7678%
5 512 67.4205%
6 512 68.3001%
7 512 68.9647%
8 512 69.5633%
9 512 69.5831%
10 512 69.8873%

重构代码

重构后的代码完成的功能如下:

  • 全图提取特征 or 区域框选提取特征
  • do PCA or not
  • do query expansion or not
  • 特征可视化

重构后的检索精度指标评价:do crop, do qe(top@10), do PCA

维度 mAP
512 71.88%
256 72.04%(73.01%)
128 70.33%
64 65.6768%
32 58.8%

在几百万数据集上获取PCA,然后用在oxford上:

维度 mAP
128 59.15%
可能的原因:Oxford查询图片都是地标图像集,而这几百万数据集都是短视频中的一些数据,导致获得的主成分不利于地标数据的表达,所以精度降低。

HybridNet

do crop, do qe(top@10), do PCA,最高维度256。

维度 mAP
256 62.41%

We chose the HybridNet for several reasons: first, its ar- chitecture is the same as the famous AlexNet [19]; second, the HybridNet has been trained on the ImageNet subset used for ILSVRC competitions (as many others) and the Places Database [29]; last, but not least, experiments conducted on various datasets demonstrate the good transferability of the learning [29, 12, 9]. Originally proposed in [29], Hybrid- Net has been used in [29, 12, 9]. The results reported in [12] show that deep features extracted from the HybridNet outperforms various architectures trained only on ImageNet, on both InriaHolidays and OxforBuilding benchmarks.

Clone this wiki locally