forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Udp for top-down and bottom up (open-mmlab#291)
* udp for bottom_up paradigm in 'switch' method * fix some code style, pylint problems * fix two code style, pylint problems * fix some code style, pylint problems * fix some code style, pylint problems * UDP for top-down paradigm * fix code style problems * fix some code style problems * fix some code style problems * fix some code style and explanation problems * fix some code style problems * simplify the implementation of 'pose_dark' and fix its usage error in top-down paradigm. * fix some code style problems * fix the conflict * fix the code style problems in JointsMSELoss_Combined and fix the testing problem by setting the default kpd as '0.0546875'. * fix some code style problems * fix some code style problems * fix some code style problems * fix some code style problems * fix some code style problems * add a config for unbiased data processing with GaussianHeatmap target in top-down paradigm and hrnet structure for bottom-up paradigm
- Loading branch information
1 parent
6f630d9
commit 12a0e1e
Showing
14 changed files
with
1,502 additions
and
158 deletions.
There are no files selected for viewing
205 changes: 205 additions & 0 deletions
205
configs/bottom_up/higherhrnet/coco/higher_hrnet32_coco_512x512_udp.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,205 @@ | ||
log_level = 'INFO' | ||
load_from = None | ||
resume_from = None | ||
dist_params = dict(backend='nccl') | ||
workflow = [('train', 1)] | ||
checkpoint_config = dict(interval=5) | ||
evaluation = dict(interval=300, metric='mAP', key_indicator='AP') | ||
|
||
optimizer = dict( | ||
type='Adam', | ||
lr=0.001, | ||
) | ||
optimizer_config = dict(grad_clip=None) | ||
# learning policy | ||
lr_config = dict( | ||
policy='step', | ||
warmup='linear', | ||
warmup_iters=500, | ||
warmup_ratio=0.001, | ||
step=[200, 260]) | ||
total_epochs = 300 | ||
log_config = dict( | ||
interval=50, | ||
hooks=[ | ||
dict(type='TextLoggerHook'), | ||
# dict(type='TensorboardLoggerHook') | ||
]) | ||
|
||
channel_cfg = dict( | ||
dataset_joints=17, | ||
dataset_channel=[ | ||
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], | ||
], | ||
inference_channel=[ | ||
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | ||
]) | ||
|
||
data_cfg = dict( | ||
image_size=512, | ||
base_size=256, | ||
base_sigma=2, | ||
heatmap_size=[128, 256], | ||
num_joints=channel_cfg['dataset_joints'], | ||
dataset_channel=channel_cfg['dataset_channel'], | ||
inference_channel=channel_cfg['inference_channel'], | ||
num_scales=2, | ||
scale_aware_sigma=False, | ||
) | ||
|
||
# model settings | ||
model = dict( | ||
type='BottomUp', | ||
pretrained='https://download.openmmlab.com/mmpose/' | ||
'pretrain_models/hrnet_w32-36af842e.pth', | ||
backbone=dict( | ||
type='HRNet', | ||
in_channels=3, | ||
extra=dict( | ||
stage1=dict( | ||
num_modules=1, | ||
num_branches=1, | ||
block='BOTTLENECK', | ||
num_blocks=(4, ), | ||
num_channels=(64, )), | ||
stage2=dict( | ||
num_modules=1, | ||
num_branches=2, | ||
block='BASIC', | ||
num_blocks=(4, 4), | ||
num_channels=(32, 64)), | ||
stage3=dict( | ||
num_modules=4, | ||
num_branches=3, | ||
block='BASIC', | ||
num_blocks=(4, 4, 4), | ||
num_channels=(32, 64, 128)), | ||
stage4=dict( | ||
num_modules=3, | ||
num_branches=4, | ||
block='BASIC', | ||
num_blocks=(4, 4, 4, 4), | ||
num_channels=(32, 64, 128, 256))), | ||
), | ||
keypoint_head=dict( | ||
type='BottomUpHigherResolutionHead', | ||
in_channels=32, | ||
num_joints=17, | ||
tag_per_joint=True, | ||
extra=dict(final_conv_kernel=1, ), | ||
num_deconv_layers=1, | ||
num_deconv_filters=[32], | ||
num_deconv_kernels=[4], | ||
num_basic_blocks=4, | ||
cat_output=[True], | ||
with_ae_loss=[True, False]), | ||
train_cfg=dict( | ||
num_joints=channel_cfg['dataset_joints'], | ||
img_size=data_cfg['image_size']), | ||
test_cfg=dict( | ||
num_joints=channel_cfg['dataset_joints'], | ||
max_num_people=30, | ||
scale_factor=[1], | ||
with_heatmaps=[True, True], | ||
with_ae=[True, False], | ||
project2image=False, | ||
nms_kernel=5, | ||
nms_padding=2, | ||
tag_per_joint=True, | ||
detection_threshold=0.1, | ||
tag_threshold=1, | ||
use_detection_val=True, | ||
ignore_too_much=False, | ||
adjust=True, | ||
refine=True, | ||
flip_test=True, | ||
use_udp=True), | ||
loss_pose=dict( | ||
type='MultiLossFactory', | ||
num_joints=17, | ||
num_stages=2, | ||
ae_loss_type='exp', | ||
with_ae_loss=[True, False], | ||
push_loss_factor=[0.001, 0.001], | ||
pull_loss_factor=[0.001, 0.001], | ||
with_heatmaps_loss=[True, True], | ||
heatmaps_loss_factor=[1.0, 1.0], | ||
), | ||
) | ||
|
||
train_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict( | ||
type='BottomUpRandomAffine', | ||
rot_factor=30, | ||
scale_factor=[0.75, 1.5], | ||
scale_type='short', | ||
trans_factor=40, | ||
use_udp=True), | ||
dict(type='BottomUpRandomFlip', flip_prob=0.5), | ||
dict(type='ToTensor'), | ||
dict( | ||
type='NormalizeTensor', | ||
mean=[0.485, 0.456, 0.406], | ||
std=[0.229, 0.224, 0.225]), | ||
dict( | ||
type='BottomUpGenerateTarget', | ||
sigma=2, | ||
max_num_people=30, | ||
use_udp=True, | ||
), | ||
dict( | ||
type='Collect', | ||
keys=['img', 'joints', 'targets', 'masks'], | ||
meta_keys=[]), | ||
] | ||
|
||
val_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='BottomUpGetImgSize', test_scale_factor=[1], use_udp=True), | ||
dict( | ||
type='BottomUpResizeAlign', | ||
transforms=[ | ||
dict(type='ToTensor'), | ||
dict( | ||
type='NormalizeTensor', | ||
mean=[0.485, 0.456, 0.406], | ||
std=[0.229, 0.224, 0.225]) | ||
], | ||
use_udp=True), | ||
dict( | ||
type='Collect', | ||
keys=[ | ||
'img', | ||
], | ||
meta_keys=[ | ||
'image_file', 'aug_data', 'test_scale_factor', 'base_size', | ||
'center', 'scale', 'flip_index' | ||
]), | ||
] | ||
|
||
test_pipeline = val_pipeline | ||
|
||
data_root = 'data/coco' | ||
data = dict( | ||
samples_per_gpu=12, | ||
workers_per_gpu=1, | ||
train=dict( | ||
type='BottomUpCocoDataset', | ||
ann_file=f'{data_root}/annotations/person_keypoints_train2017.json', | ||
img_prefix=f'{data_root}/train2017/', | ||
data_cfg=data_cfg, | ||
pipeline=train_pipeline), | ||
val=dict( | ||
type='BottomUpCocoDataset', | ||
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', | ||
img_prefix=f'{data_root}/val2017/', | ||
data_cfg=data_cfg, | ||
pipeline=val_pipeline), | ||
test=dict( | ||
type='BottomUpCocoDataset', | ||
ann_file=f'{data_root}/annotations/person_keypoints_val2017.json', | ||
img_prefix=f'{data_root}/val2017/', | ||
data_cfg=data_cfg, | ||
pipeline=val_pipeline), | ||
) |
Oops, something went wrong.