forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add checkpoint and config files (open-mmlab#525)
* add new configs * add cfgs * add augmentation configs * use hasattr to exclude unsupported transforms * update udp configs
- Loading branch information
Showing
54 changed files
with
7,726 additions
and
23 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
161 changes: 161 additions & 0 deletions
161
configs/bottom_up/mobilenet/crowdpose/mobilenetv2_crowdpose_512x512.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
log_level = 'INFO' | ||
load_from = None | ||
resume_from = None | ||
dist_params = dict(backend='nccl') | ||
workflow = [('train', 1)] | ||
checkpoint_config = dict(interval=50) | ||
evaluation = dict(interval=50, metric='mAP', key_indicator='AP') | ||
|
||
optimizer = dict( | ||
type='Adam', | ||
lr=0.0015, | ||
) | ||
optimizer_config = dict(grad_clip=None) | ||
# learning policy | ||
lr_config = dict( | ||
policy='step', | ||
warmup='linear', | ||
warmup_iters=500, | ||
warmup_ratio=0.001, | ||
step=[200, 260]) | ||
total_epochs = 300 | ||
log_config = dict( | ||
interval=50, | ||
hooks=[ | ||
dict(type='TextLoggerHook'), | ||
# dict(type='TensorboardLoggerHook') | ||
]) | ||
|
||
channel_cfg = dict( | ||
num_output_channels=14, | ||
dataset_joints=14, | ||
dataset_channel=[ | ||
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], | ||
], | ||
inference_channel=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]) | ||
|
||
data_cfg = dict( | ||
image_size=512, | ||
base_size=256, | ||
base_sigma=2, | ||
heatmap_size=[128], | ||
num_joints=channel_cfg['dataset_joints'], | ||
dataset_channel=channel_cfg['dataset_channel'], | ||
inference_channel=channel_cfg['inference_channel'], | ||
num_scales=1, | ||
scale_aware_sigma=False, | ||
) | ||
|
||
# model settings | ||
model = dict( | ||
type='BottomUp', | ||
pretrained='mmcls://mobilenet_v2', | ||
backbone=dict(type='MobileNetV2', widen_factor=1., out_indices=(7, )), | ||
keypoint_head=dict( | ||
type='BottomUpSimpleHead', | ||
in_channels=1280, | ||
num_joints=14, | ||
tag_per_joint=True, | ||
with_ae_loss=[True], | ||
loss_keypoint=dict( | ||
type='MultiLossFactory', | ||
num_joints=14, | ||
num_stages=1, | ||
ae_loss_type='exp', | ||
with_ae_loss=[True], | ||
push_loss_factor=[0.001], | ||
pull_loss_factor=[0.001], | ||
with_heatmaps_loss=[True], | ||
heatmaps_loss_factor=[1.0])), | ||
train_cfg=dict( | ||
num_joints=channel_cfg['dataset_joints'], | ||
img_size=data_cfg['image_size']), | ||
test_cfg=dict( | ||
num_joints=channel_cfg['dataset_joints'], | ||
max_num_people=30, | ||
scale_factor=[1], | ||
with_heatmaps=[True], | ||
with_ae=[True], | ||
project2image=True, | ||
nms_kernel=5, | ||
nms_padding=2, | ||
tag_per_joint=True, | ||
detection_threshold=0.1, | ||
tag_threshold=1, | ||
use_detection_val=True, | ||
ignore_too_much=False, | ||
adjust=True, | ||
refine=True, | ||
flip_test=True)) | ||
|
||
train_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict( | ||
type='BottomUpRandomAffine', | ||
rot_factor=30, | ||
scale_factor=[0.75, 1.5], | ||
scale_type='short', | ||
trans_factor=40), | ||
dict(type='BottomUpRandomFlip', flip_prob=0.5), | ||
dict(type='ToTensor'), | ||
dict( | ||
type='NormalizeTensor', | ||
mean=[0.485, 0.456, 0.406], | ||
std=[0.229, 0.224, 0.225]), | ||
dict( | ||
type='BottomUpGenerateTarget', | ||
sigma=2, | ||
max_num_people=30, | ||
), | ||
dict( | ||
type='Collect', | ||
keys=['img', 'joints', 'targets', 'masks'], | ||
meta_keys=[]), | ||
] | ||
|
||
val_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='BottomUpGetImgSize', test_scale_factor=[1]), | ||
dict( | ||
type='BottomUpResizeAlign', | ||
transforms=[ | ||
dict(type='ToTensor'), | ||
dict( | ||
type='NormalizeTensor', | ||
mean=[0.485, 0.456, 0.406], | ||
std=[0.229, 0.224, 0.225]), | ||
]), | ||
dict( | ||
type='Collect', | ||
keys=['img'], | ||
meta_keys=[ | ||
'image_file', 'aug_data', 'test_scale_factor', 'base_size', | ||
'center', 'scale', 'flip_index' | ||
]), | ||
] | ||
|
||
test_pipeline = val_pipeline | ||
|
||
data_root = 'data/crowdpose' | ||
data = dict( | ||
samples_per_gpu=24, | ||
workers_per_gpu=2, | ||
train=dict( | ||
type='BottomUpCrowdPoseDataset', | ||
ann_file=f'{data_root}/annotations/mmpose_crowdpose_trainval.json', | ||
img_prefix=f'{data_root}/images/', | ||
data_cfg=data_cfg, | ||
pipeline=train_pipeline), | ||
val=dict( | ||
type='BottomUpCrowdPoseDataset', | ||
ann_file=f'{data_root}/annotations/mmpose_crowdpose_test.json', | ||
img_prefix=f'{data_root}/images/', | ||
data_cfg=data_cfg, | ||
pipeline=val_pipeline), | ||
test=dict( | ||
type='BottomUpCrowdPoseDataset', | ||
ann_file=f'{data_root}/annotations/mmpose_crowdpose_test.json', | ||
img_prefix=f'{data_root}/images/', | ||
data_cfg=data_cfg, | ||
pipeline=test_pipeline), | ||
) |
161 changes: 161 additions & 0 deletions
161
configs/bottom_up/resnet/crowdpose/res101_crowdpose_512x512.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
log_level = 'INFO' | ||
load_from = None | ||
resume_from = None | ||
dist_params = dict(backend='nccl') | ||
workflow = [('train', 1)] | ||
checkpoint_config = dict(interval=50) | ||
evaluation = dict(interval=50, metric='mAP', key_indicator='AP') | ||
|
||
optimizer = dict( | ||
type='Adam', | ||
lr=0.0015, | ||
) | ||
optimizer_config = dict(grad_clip=None) | ||
# learning policy | ||
lr_config = dict( | ||
policy='step', | ||
warmup='linear', | ||
warmup_iters=500, | ||
warmup_ratio=0.001, | ||
step=[200, 260]) | ||
total_epochs = 300 | ||
log_config = dict( | ||
interval=50, | ||
hooks=[ | ||
dict(type='TextLoggerHook'), | ||
# dict(type='TensorboardLoggerHook') | ||
]) | ||
|
||
channel_cfg = dict( | ||
num_output_channels=14, | ||
dataset_joints=14, | ||
dataset_channel=[ | ||
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], | ||
], | ||
inference_channel=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]) | ||
|
||
data_cfg = dict( | ||
image_size=512, | ||
base_size=256, | ||
base_sigma=2, | ||
heatmap_size=[128], | ||
num_joints=channel_cfg['dataset_joints'], | ||
dataset_channel=channel_cfg['dataset_channel'], | ||
inference_channel=channel_cfg['inference_channel'], | ||
num_scales=1, | ||
scale_aware_sigma=False, | ||
) | ||
|
||
# model settings | ||
model = dict( | ||
type='BottomUp', | ||
pretrained='torchvision://resnet101', | ||
backbone=dict(type='ResNet', depth=101), | ||
keypoint_head=dict( | ||
type='BottomUpSimpleHead', | ||
in_channels=2048, | ||
num_joints=14, | ||
tag_per_joint=True, | ||
with_ae_loss=[True], | ||
loss_keypoint=dict( | ||
type='MultiLossFactory', | ||
num_joints=14, | ||
num_stages=1, | ||
ae_loss_type='exp', | ||
with_ae_loss=[True], | ||
push_loss_factor=[0.001], | ||
pull_loss_factor=[0.001], | ||
with_heatmaps_loss=[True], | ||
heatmaps_loss_factor=[1.0])), | ||
train_cfg=dict( | ||
num_joints=channel_cfg['dataset_joints'], | ||
img_size=data_cfg['image_size']), | ||
test_cfg=dict( | ||
num_joints=channel_cfg['dataset_joints'], | ||
max_num_people=30, | ||
scale_factor=[1], | ||
with_heatmaps=[True], | ||
with_ae=[True], | ||
project2image=True, | ||
nms_kernel=5, | ||
nms_padding=2, | ||
tag_per_joint=True, | ||
detection_threshold=0.1, | ||
tag_threshold=1, | ||
use_detection_val=True, | ||
ignore_too_much=False, | ||
adjust=True, | ||
refine=True, | ||
flip_test=True)) | ||
|
||
train_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict( | ||
type='BottomUpRandomAffine', | ||
rot_factor=30, | ||
scale_factor=[0.75, 1.5], | ||
scale_type='short', | ||
trans_factor=40), | ||
dict(type='BottomUpRandomFlip', flip_prob=0.5), | ||
dict(type='ToTensor'), | ||
dict( | ||
type='NormalizeTensor', | ||
mean=[0.485, 0.456, 0.406], | ||
std=[0.229, 0.224, 0.225]), | ||
dict( | ||
type='BottomUpGenerateTarget', | ||
sigma=2, | ||
max_num_people=30, | ||
), | ||
dict( | ||
type='Collect', | ||
keys=['img', 'joints', 'targets', 'masks'], | ||
meta_keys=[]), | ||
] | ||
|
||
val_pipeline = [ | ||
dict(type='LoadImageFromFile'), | ||
dict(type='BottomUpGetImgSize', test_scale_factor=[1]), | ||
dict( | ||
type='BottomUpResizeAlign', | ||
transforms=[ | ||
dict(type='ToTensor'), | ||
dict( | ||
type='NormalizeTensor', | ||
mean=[0.485, 0.456, 0.406], | ||
std=[0.229, 0.224, 0.225]), | ||
]), | ||
dict( | ||
type='Collect', | ||
keys=['img'], | ||
meta_keys=[ | ||
'image_file', 'aug_data', 'test_scale_factor', 'base_size', | ||
'center', 'scale', 'flip_index' | ||
]), | ||
] | ||
|
||
test_pipeline = val_pipeline | ||
|
||
data_root = 'data/crowdpose' | ||
data = dict( | ||
samples_per_gpu=16, | ||
workers_per_gpu=2, | ||
train=dict( | ||
type='BottomUpCrowdPoseDataset', | ||
ann_file=f'{data_root}/annotations/mmpose_crowdpose_trainval.json', | ||
img_prefix=f'{data_root}/images/', | ||
data_cfg=data_cfg, | ||
pipeline=train_pipeline), | ||
val=dict( | ||
type='BottomUpCrowdPoseDataset', | ||
ann_file=f'{data_root}/annotations/mmpose_crowdpose_test.json', | ||
img_prefix=f'{data_root}/images/', | ||
data_cfg=data_cfg, | ||
pipeline=val_pipeline), | ||
test=dict( | ||
type='BottomUpCrowdPoseDataset', | ||
ann_file=f'{data_root}/annotations/mmpose_crowdpose_test.json', | ||
img_prefix=f'{data_root}/images/', | ||
data_cfg=data_cfg, | ||
pipeline=test_pipeline), | ||
) |
Oops, something went wrong.