Skip to content

Commit

Permalink
zh-translation: /docs/root/start/sandboxes/zipkin_tracing.rst (envoyp…
Browse files Browse the repository at this point in the history
…roxy#431)

* finish

* fix

* fix

* fix build

* fix

* fix
  • Loading branch information
pefish authored Dec 28, 2020
1 parent 8ae380c commit 2349356
Showing 1 changed file with 31 additions and 42 deletions.
73 changes: 31 additions & 42 deletions docs/root/start/sandboxes/zipkin_tracing.rst
Original file line number Diff line number Diff line change
@@ -1,44 +1,33 @@
.. _install_sandboxes_zipkin_tracing:

Zipkin Tracing
==============

The Zipkin tracing sandbox demonstrates Envoy's :ref:`request tracing <arch_overview_tracing>`
capabilities using `Zipkin <https://zipkin.io/>`_ as the tracing provider. This sandbox
is very similar to the front proxy architecture described above, with one difference:
service1 makes an API call to service2 before returning a response.
The three containers will be deployed inside a virtual network called ``envoymesh``.

All incoming requests are routed via the front Envoy, which is acting as a reverse proxy
sitting on the edge of the ``envoymesh`` network. Port ``8000`` is exposed
by docker compose (see :repo:`/examples/zipkin-tracing/docker-compose.yaml`). Notice that
all Envoys are configured to collect request traces (e.g., http_connection_manager/config/tracing setup in
:repo:`/examples/zipkin-tracing/front-envoy-zipkin.yaml`) and setup to propagate the spans generated
by the Zipkin tracer to a Zipkin cluster (trace driver setup
in :repo:`/examples/zipkin-tracing/front-envoy-zipkin.yaml`).

Before routing a request to the appropriate service Envoy or the application, Envoy will take
care of generating the appropriate spans for tracing (parent/child/shared context spans).
At a high-level, each span records the latency of upstream API calls as well as information
needed to correlate the span with other related spans (e.g., the trace ID).

One of the most important benefits of tracing from Envoy is that it will take care of
propagating the traces to the Zipkin service cluster. However, in order to fully take advantage
of tracing, the application has to propagate trace headers that Envoy generates, while making
calls to other services. In the sandbox we have provided, the simple flask app
(see trace function in :repo:`/examples/front-proxy/service.py`) acting as service1 propagates
the trace headers while making an outbound call to service2.


Running the Sandbox
Zipkin 追踪(trace)
=====================

Zipkin 追踪沙盒使用 Zipkin <https://zipkin.io/> 作为追踪提供程序来实现 Envoy 的 :ref:请求追踪功能。
这个沙盒与前面所讲的前端代理架构非常的相似,但有一点不同的是:在返回响应之前,service1 会对 service2 进行 API 调用。
这三个容器将被部署在名为 ``envoymesh`` 的虚拟网络中。

所有传入的请求都通过前端 envoy 进行路由,envoy 充当位于 ``envoymesh`` 网络边缘的反向代理。
端口 ``8000`` 由 docker compose 暴露(参见 :repo:`/examples/zipkin-tracing/docker-compose.yaml`)。
请注意,所有 envoy 都配置为收集请求跟踪 (例如 :repo:`/examples/zipkin-tracing/front-envoy-zipkin.yaml`中的 http_connection_manager/config/tracing 配置) 并设置为传递 Zipkin 追踪器生成的 span 到 Zipkin 集群中 (追踪驱动设置在 :repo:`/examples/zipkin-tracing/front-envoy-zipkin.yaml`)。

在将请求路由到合适的 envoy 或应用程序之前,Envoy 会生成合适的用于追踪的 span(父子共享的上下文 span)。
在高层次上,每个 span 记录上游API调用的延迟以及将 span 与其他相关 span(例如跟踪ID)关联所需的信息。

从 Envoy 进行跟踪的最重要的好处之一是,它会保证将跟踪信息传播到 Zipkin 服务群集。
但是,为了充分利用跟踪,应用端必须在调用其他服务的时候传递 Envoy 生成的追踪的请求头信息。
在我们提供的沙箱例子中,作为 service1 的简单 flask 应用(参见 :repo:`/examples/front-proxy/service.py` 中的跟踪函数)在访问 service2 的时候传递了追踪的请求头信息。


运行沙盒
~~~~~~~~~~~~~~~~~~~

.. include:: _include/docker-env-setup.rst

Step 3: Build the sandbox
步骤 3: 构建沙盒
*************************

To build this sandbox example, and start the example apps run the following commands:
要构建这个沙盒示例,并启动示例应用程序,请运行以下命令:

.. code-block:: console
Expand All @@ -55,10 +44,10 @@ To build this sandbox example, and start the example apps run the following comm
zipkin-tracing_service2_1 /bin/sh -c /usr/local/bin/ ... Up 10000/tcp, 8000/tcp
zipkin-tracing_zipkin_1 /busybox/sh run.sh Up 9410/tcp, 0.0.0.0:9411->9411/tcp
Step 4: Generate some load
步骤 4: 发送请求
**************************

You can now send a request to service1 via the front-envoy as follows:
你现在可以通过 envoy 向 service1 发送请求,如下所示:

.. code-block:: console
Expand All @@ -80,11 +69,11 @@ You can now send a request to service1 via the front-envoy as follows:
Hello from behind Envoy (service 1)! hostname: f26027f1ce28 resolvedhostname: 172.19.0.6
* Connection #0 to host 192.168.99.100 left intact
Step 5: View the traces in Zipkin UI
************************************
步骤 5: Zipkin UI 中查看追踪
*******************************************

Point your browser to http://localhost:9411 . You should see the Zipkin dashboard.
Set the service to "front-proxy" and set the start time to a few minutes before
the start of the test (step 2) and hit enter. You should see traces from the front-proxy.
Click on a trace to explore the path taken by the request from front-proxy to service1
to service2, as well as the latency incurred at each hop.
使用你的浏览器访问 http://localhost:9411
你应该看到 Zipkin 仪表板。
将服务设置为 “front-proxy”,并将开始时间设置为在测试(步骤 2)开始前几分钟并按回车。
你应该能看到来自 front-proxy 的跟踪信息。
单击一个追踪来显示从 front-proxy 到 service1 再到 service2 的路径信息,以及每个跳跃点所产生的延迟。

0 comments on commit 2349356

Please sign in to comment.