- 0도 (원본 이미지)
- 90도
- 180도
- 270
이미지의 각 회전된 버전에 가우시안 노이즈를 적용하여 데이터의 다양성을 증가시킵니다.
- 각 증강 방법 및 이미지 정규화에 대해서는 여기서 볼 수 있습니다. Custom Dataset
- GAN을 이용하여 Generate 한 코드는 여기서 볼 수 있습니다. GAN
![image_cnt_graph](https://private-user-images.githubusercontent.com/136695011/346402573-763484b1-f423-4f96-96c3-8d3d5e0a099a.jpg?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk0ODM5MDcsIm5iZiI6MTczOTQ4MzYwNywicGF0aCI6Ii8xMzY2OTUwMTEvMzQ2NDAyNTczLTc2MzQ4NGIxLWY0MjMtNGY5Ni05NmMzLThkM2Q1ZTBhMDk5YS5qcGc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjEzJTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIxM1QyMTUzMjdaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT05NzRmMDFhZThkMDA3YTUzNTI4NDMxYzhjYzRiN2I4N2FjZDliYTYwMWQwODQxZjg3ZWEwNjIwZDk3OWNkZmFlJlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.01UabSssCarwWL02ne9UEC2bq3aqxi0IP93Ybj-5Y44)
made by JKpon
- AutoEncoder의 backbone은 여기서 보실 수 있습니다. Backbone
- AutoEncoder에 Normal Class Data 만 학습 시킵니다. 학습 로직은 여기서 볼 수 있습니다. Training logic
- 학습 후 roc 그래프와 heatmap 등을 그려보며 학습 결과를 확인하고 그에 따른 hyperparameter를 바꾸어주었습니다. 실행 파일은 여기서 볼 수 있습니다. Run
- 학습 완료 후 학습 한 모델을 토대로 추론 과정을 진행 하였습니다. 추론 로직은 여기서 볼 수 있습니다. Predict Logic
- 새부적인 각 조건에 대한 코드는 여기서 보실 수 있으십니다. Config
![heatmap](https://private-user-images.githubusercontent.com/136695011/345840016-a5accc95-4739-4c35-bf63-b9ce1880daaa.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk0ODM5MDcsIm5iZiI6MTczOTQ4MzYwNywicGF0aCI6Ii8xMzY2OTUwMTEvMzQ1ODQwMDE2LWE1YWNjYzk1LTQ3MzktNGMzNS1iZjYzLWI5Y2UxODgwZGFhYS5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjEzJTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIxM1QyMTUzMjdaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT1lY2QxMGY1N2QyZmUxMTE2NjIyNzc1ZTU1ZDlhZWJmNjY1ZTAyZmNhNjhjMjM5NWY1YmZkZmIxMmFiNWZmMDZmJlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.Qz95UxyGJmg1oMfmStZRK2uHk0fkp3sHYYilKGKyMj0)
![histogram](https://private-user-images.githubusercontent.com/136695011/345840119-de209bc4-ef5d-4550-8a49-c966caba047a.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk0ODM5MDcsIm5iZiI6MTczOTQ4MzYwNywicGF0aCI6Ii8xMzY2OTUwMTEvMzQ1ODQwMTE5LWRlMjA5YmM0LWVmNWQtNDU1MC04YTQ5LWM5NjZjYWJhMDQ3YS5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjEzJTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIxM1QyMTUzMjdaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT0zZWRiNGVlODEyMzJlZDU2ZDRhNzA4NGEzODc2YjllOGNhM2M5NjRhYmQ0NDM3N2E2ODQ4YmI1ZmZkNjMwMTFiJlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.1-AEvZ8q5GObKca5FJIona2lc0EQrfm37pjrkeNg3CM)
![roc](https://private-user-images.githubusercontent.com/136695011/345840265-c9b1a574-1038-460f-ac34-7fa2cd34c52d.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzk0ODM5MDcsIm5iZiI6MTczOTQ4MzYwNywicGF0aCI6Ii8xMzY2OTUwMTEvMzQ1ODQwMjY1LWM5YjFhNTc0LTEwMzgtNDYwZi1hYzM0LTdmYTJjZDM0YzUyZC5wbmc_WC1BbXotQWxnb3JpdGhtPUFXUzQtSE1BQy1TSEEyNTYmWC1BbXotQ3JlZGVudGlhbD1BS0lBVkNPRFlMU0E1M1BRSzRaQSUyRjIwMjUwMjEzJTJGdXMtZWFzdC0xJTJGczMlMkZhd3M0X3JlcXVlc3QmWC1BbXotRGF0ZT0yMDI1MDIxM1QyMTUzMjdaJlgtQW16LUV4cGlyZXM9MzAwJlgtQW16LVNpZ25hdHVyZT00MDBkNWMyMzBhODA3MjRhYjE2NzRlZmIyNjQ3YTA1YmU5ZTg2YmMyZmRmMzc3MzM0MzI0OTFjZjNjOTIwY2Q5JlgtQW16LVNpZ25lZEhlYWRlcnM9aG9zdCJ9.ButEGBdYr2l-JYlPBBbx1_4F3kl_2vk09EQEjGluIno)
made by YoungWoong