Skip to content

Commit

Permalink
Adopt qiskit.result.mitigation into qiskit_experiments.data_processing
Browse files Browse the repository at this point in the history
  • Loading branch information
wshanks committed Nov 5, 2024
1 parent 93b86eb commit 2f0d192
Show file tree
Hide file tree
Showing 12 changed files with 1,346 additions and 5 deletions.
12 changes: 12 additions & 0 deletions qiskit_experiments/data_processing/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,15 @@
BaseDiscriminator
SkLDA
SkQDA
Mitigators
==========
.. autosummary::
:toctree: ../stubs/
BaseReadoutMitigator
LocalReadoutMitigator
CorrelatedReadoutMitigator
"""

from .data_action import DataAction, TrainableDataAction
Expand All @@ -104,4 +113,7 @@

from .data_processor import DataProcessor
from .discriminator import BaseDiscriminator
from .mitigation.base_readout_mitigator import BaseReadoutMitigator
from .mitigation.correlated_readout_mitigator import CorrelatedReadoutMitigator
from .mitigation.local_readout_mitigator import LocalReadoutMitigator
from .sklearn_discriminators import SkLDA, SkQDA
22 changes: 22 additions & 0 deletions qiskit_experiments/data_processing/mitigation/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2021.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.

"""Readout error mitigation."""
from .base_readout_mitigator import BaseReadoutMitigator
from .correlated_readout_mitigator import CorrelatedReadoutMitigator
from .local_readout_mitigator import LocalReadoutMitigator
from .utils import (
counts_probability_vector,
expval_with_stddev,
stddev,
str2diag,
)
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Base class for readout error mitigation.
"""

from abc import ABC, abstractmethod
from typing import Optional, List, Iterable, Tuple, Union, Callable

import numpy as np

from qiskit.result.counts import Counts
from qiskit.result.distributions.quasi import QuasiDistribution


class BaseReadoutMitigator(ABC):
"""Base readout error mitigator class."""

@abstractmethod
def quasi_probabilities(
self,
data: Counts,
qubits: Iterable[int] = None,
clbits: Optional[List[int]] = None,
shots: Optional[int] = None,
) -> QuasiDistribution:
"""Convert counts to a dictionary of quasi-probabilities
Args:
data: Counts to be mitigated.
qubits: the physical qubits measured to obtain the counts clbits.
If None these are assumed to be qubits [0, ..., N-1]
for N-bit counts.
clbits: Optional, marginalize counts to just these bits.
shots: Optional, the total number of shots, if None shots will
be calculated as the sum of all counts.
Returns:
QuasiDistribution: A dictionary containing pairs of [output, mean] where "output"
is the key in the dictionaries,
which is the length-N bitstring of a measured standard basis state,
and "mean" is the mean of non-zero quasi-probability estimates.
"""

@abstractmethod
def expectation_value(
self,
data: Counts,
diagonal: Union[Callable, dict, str, np.ndarray],
qubits: Iterable[int] = None,
clbits: Optional[List[int]] = None,
shots: Optional[int] = None,
) -> Tuple[float, float]:
"""Calculate the expectation value of a diagonal Hermitian operator.
Args:
data: Counts object to be mitigated.
diagonal: the diagonal operator. This may either be specified
as a string containing I,Z,0,1 characters, or as a
real valued 1D array_like object supplying the full diagonal,
or as a dictionary, or as Callable.
qubits: the physical qubits measured to obtain the counts clbits.
If None these are assumed to be qubits [0, ..., N-1]
for N-bit counts.
clbits: Optional, marginalize counts to just these bits.
shots: Optional, the total number of shots, if None shots will
be calculated as the sum of all counts.
Returns:
The mean and an upper bound of the standard deviation of operator
expectation value calculated from the current counts.
"""
Original file line number Diff line number Diff line change
@@ -0,0 +1,270 @@
# This code is part of Qiskit.
#
# (C) Copyright IBM 2021
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Readout mitigator class based on the A-matrix inversion method
"""

import math
from typing import Optional, List, Tuple, Iterable, Callable, Union, Dict
import numpy as np

from qiskit.exceptions import QiskitError

from qiskit.result.distributions.quasi import QuasiDistribution
from qiskit.result.counts import Counts
from .base_readout_mitigator import BaseReadoutMitigator
from .utils import counts_probability_vector, z_diagonal, str2diag


class CorrelatedReadoutMitigator(BaseReadoutMitigator):
"""N-qubit readout error mitigator.
Mitigates :meth:`expectation_value` and :meth:`quasi_probabilities`.
The mitigation_matrix should be calibrated using qiskit experiments.
This mitigation method should be used in case the readout errors of the qubits
are assumed to be correlated. The mitigation_matrix of *N* qubits is of size
:math:`2^N x 2^N` so the mitigation complexity is :math:`O(4^N)`.
"""

def __init__(self, assignment_matrix: np.ndarray, qubits: Optional[Iterable[int]] = None):
"""Initialize a CorrelatedReadoutMitigator
Args:
assignment_matrix: readout error assignment matrix.
qubits: Optional, the measured physical qubits for mitigation.
Raises:
QiskitError: matrix size does not agree with number of qubits
"""
if np.any(assignment_matrix < 0) or not np.allclose(np.sum(assignment_matrix, axis=0), 1):
raise QiskitError("Assignment matrix columns must be valid probability distributions")
assignment_matrix = np.asarray(assignment_matrix, dtype=float)
matrix_qubits_num = int(math.log2(assignment_matrix.shape[0]))
if qubits is None:
self._num_qubits = matrix_qubits_num
self._qubits = range(self._num_qubits)
else:
if len(qubits) != matrix_qubits_num:
raise QiskitError(
f"The number of given qubits ({len(qubits)}) is different than the number of "
f"qubits inferred from the matrices ({matrix_qubits_num})"
)
self._qubits = qubits
self._num_qubits = len(self._qubits)
self._qubit_index = dict(zip(self._qubits, range(self._num_qubits)))
self._assignment_mat = assignment_matrix
self._mitigation_mats = {}

@property
def settings(self) -> Dict:
"""Return settings."""
return {"assignment_matrix": self._assignment_mat, "qubits": self._qubits}

def expectation_value(
self,
data: Counts,
diagonal: Union[Callable, dict, str, np.ndarray] = None,
qubits: Iterable[int] = None,
clbits: Optional[List[int]] = None,
shots: Optional[int] = None,
) -> Tuple[float, float]:
r"""Compute the mitigated expectation value of a diagonal observable.
This computes the mitigated estimator of
:math:`\langle O \rangle = \mbox{Tr}[\rho. O]` of a diagonal observable
:math:`O = \sum_{x\in\{0, 1\}^n} O(x)|x\rangle\!\langle x|`.
Args:
data: Counts object
diagonal: Optional, the vector of diagonal values for summing the
expectation value. If ``None`` the default value is
:math:`[1, -1]^\otimes n`.
qubits: Optional, the measured physical qubits the count
bitstrings correspond to. If None qubits are assumed to be
:math:`[0, ..., n-1]`.
clbits: Optional, if not None marginalize counts to the specified bits.
shots: the number of shots.
Returns:
(float, float): the expectation value and an upper bound of the standard deviation.
Additional Information:
The diagonal observable :math:`O` is input using the ``diagonal`` kwarg as
a list or Numpy array :math:`[O(0), ..., O(2^n -1)]`. If no diagonal is specified
the diagonal of the Pauli operator
:math`O = \mbox{diag}(Z^{\otimes n}) = [1, -1]^{\otimes n}` is used.
The ``clbits`` kwarg is used to marginalize the input counts dictionary
over the specified bit-values, and the ``qubits`` kwarg is used to specify
which physical qubits these bit-values correspond to as
``circuit.measure(qubits, clbits)``.
"""

if qubits is None:
qubits = self._qubits
probs_vec, shots = counts_probability_vector(
data, qubit_index=self._qubit_index, clbits=clbits, qubits=qubits
)

# Get qubit mitigation matrix and mitigate probs
mit_mat = self.mitigation_matrix(qubits)

# Get operator coeffs
if diagonal is None:
diagonal = z_diagonal(2**self._num_qubits)
elif isinstance(diagonal, str):
diagonal = str2diag(diagonal)

# Apply transpose of mitigation matrix
coeffs = mit_mat.T.dot(diagonal)
expval = coeffs.dot(probs_vec)
stddev_upper_bound = self.stddev_upper_bound(shots)

return (expval, stddev_upper_bound)

def quasi_probabilities(
self,
data: Counts,
qubits: Optional[List[int]] = None,
clbits: Optional[List[int]] = None,
shots: Optional[int] = None,
) -> QuasiDistribution:
"""Compute mitigated quasi probabilities value.
Args:
data: counts object
qubits: qubits the count bitstrings correspond to.
clbits: Optional, marginalize counts to just these bits.
shots: Optional, the total number of shots, if None shots will
be calculated as the sum of all counts.
Returns:
QuasiDistribution: A dictionary containing pairs of [output, mean] where "output"
is the key in the dictionaries,
which is the length-N bitstring of a measured standard basis state,
and "mean" is the mean of non-zero quasi-probability estimates.
"""
if qubits is None:
qubits = self._qubits
probs_vec, calculated_shots = counts_probability_vector(
data, qubit_index=self._qubit_index, clbits=clbits, qubits=qubits
)
if shots is None:
shots = calculated_shots

# Get qubit mitigation matrix and mitigate probs
mit_mat = self.mitigation_matrix(qubits)

# Apply transpose of mitigation matrix
probs_vec = mit_mat.dot(probs_vec)
probs_dict = {}
for index, _ in enumerate(probs_vec):
probs_dict[index] = probs_vec[index]

quasi_dist = QuasiDistribution(
probs_dict, stddev_upper_bound=self.stddev_upper_bound(shots)
)

return quasi_dist

def mitigation_matrix(self, qubits: List[int] = None) -> np.ndarray:
r"""Return the readout mitigation matrix for the specified qubits.
The mitigation matrix :math:`A^{-1}` is defined as the inverse of the
:meth:`assignment_matrix` :math:`A`.
Args:
qubits: Optional, qubits being measured.
Returns:
np.ndarray: the measurement error mitigation matrix :math:`A^{-1}`.
"""
if qubits is None:
qubits = self._qubits
qubits = tuple(sorted(qubits))

# Check for cached mitigation matrix
# if not present compute
if qubits not in self._mitigation_mats:
marginal_matrix = self.assignment_matrix(qubits)
try:
mit_mat = np.linalg.inv(marginal_matrix)
except np.linalg.LinAlgError:
# Use pseudo-inverse if matrix is singular
mit_mat = np.linalg.pinv(marginal_matrix)
self._mitigation_mats[qubits] = mit_mat

return self._mitigation_mats[qubits]

def assignment_matrix(self, qubits: List[int] = None) -> np.ndarray:
r"""Return the readout assignment matrix for specified qubits.
The assignment matrix is the stochastic matrix :math:`A` which assigns
a noisy readout probability distribution to an ideal input
readout distribution: :math:`P(i|j) = \langle i | A | j \rangle`.
Args:
qubits: Optional, qubits being measured.
Returns:
np.ndarray: the assignment matrix A.
"""
if qubits is None:
qubits = self._qubits
if qubits == self._num_qubits:
return self._assignment_mat

if isinstance(qubits, int):
qubits = [qubits]

qubit_indices = [self._qubit_index[qubit] for qubit in qubits]
# Compute marginal matrix
axis = tuple(
self._num_qubits - 1 - i for i in set(range(self._num_qubits)).difference(qubit_indices)
)
num_qubits = len(qubits)

new_amat = np.zeros(2 * [2**num_qubits], dtype=float)
for i, col in enumerate(self._assignment_mat.T[self._keep_indexes(qubit_indices)]):
new_amat[i] = (
np.reshape(col, self._num_qubits * [2]).sum(axis=axis).reshape([2**num_qubits])
)
new_amat = new_amat.T
return new_amat

@staticmethod
def _keep_indexes(qubits):
indexes = [0]
for i in sorted(qubits):
indexes += [idx + (1 << i) for idx in indexes]
return indexes

def _compute_gamma(self):
"""Compute gamma for N-qubit mitigation"""
mitmat = self.mitigation_matrix(qubits=self._qubits)
return np.max(np.sum(np.abs(mitmat), axis=0))

def stddev_upper_bound(self, shots: int):
"""Return an upper bound on standard deviation of expval estimator.
Args:
shots: Number of shots used for expectation value measurement.
Returns:
float: the standard deviation upper bound.
"""
gamma = self._compute_gamma()
return gamma / math.sqrt(shots)

@property
def qubits(self) -> Tuple[int]:
"""The device qubits for this mitigator"""
return self._qubits
Loading

0 comments on commit 2f0d192

Please sign in to comment.