[Show or Hide]
install.packages("configr", version = '0.3.5')
install.packages("vroom", version = '1.6.3')
install.packages("data.table", version = '1.14.8')
install.packages("Ckmeans.1d.dp", version = '4.3.5')
install.packages("gplots", version = '3.1.3')
install.packages("ggplot2", version = '3.4.3')
install.packages("plotly", version = '4.10.4')
install.packages("ggcorrplot", version = '0.1.4.1')
install.packages("corrplot", version = '0.92')
install.packages("see", version = '0.8.0')
install.packages("ggbeeswarm", version = '0.7.2')
install.packages("reactable", version = '0.4.4')
install.packages("reshape2", version = '1.4.4')
install.packages("htmltools", version = '0.5.6')
install.packages("sparkline", version = '2.0')
install.packages("dendextend", version = '1.17.1')
install.packages("gtools", version = '3.9.4')
install.packages("BiocManager")
BiocManager::install(version = "3.18")
BiocManager::install("DESeq2")
BiocManager::install("DEGreport")
BiocManager::install("apeglm")
Load dependencies if required
library(configr)
library(vroom)
library(data.table)
library(Ckmeans.1d.dp)
library(gplots)
library(ggplot2)
library(plotly)
library(ggcorrplot)
library(corrplot)
library(see)
library(ggbeeswarm)
library(reactable)
library(htmltools)
library(sparkline)
library(dendextend)
library(reshape2)
library(gtools)
library(DESeq2)
library(DEGreport)
library(apeglm)
(TOP)
Install from github
install.packages("devtools")
library(devtools)
install_github("wtsi-hgi/MAVEQC")
Or
Install from the compiled source file
install.packages("/path/of/MAVEQC.tar.gz", type = "source")
(TOP)
sample_name | replicate | condition | ref_time_point | library_independent_count | library_dependent_count | valiant_meta | vep_anno | adapt5 | adapt3 | per_r1_adaptor | per_r2_adaptor | library_name | library_type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
sample1 | R1 | D4 | D4 | s1.allcounts.tsv.gz | s1.libcounts.tsv.gz | meta.csv.gz | meta_consequences.tsv.gz | CTGACTGGCACCTCTTCCCCCAGGA | CCCCGACCCCTCCCCAGCGTGAATG | 0.21 | 0.10 | libA | screen |
sample2 | R2 | D4 | D4 | s2.allcounts.tsv.gz | s2.libcounts.tsv.gz | meta.csv.gz | meta_consequences.tsv.gz | CTGACTGGCACCTCTTCCCCCAGGA | CCCCGACCCCTCCCCAGCGTGAATG | 0.11 | 0.02 | libA | screen |
sample3 | R3 | D4 | D4 | s3.allcounts.tsv.gz | s3.libcounts.tsv.gz | meta.csv.gz | meta_consequences.tsv.gz | CTGACTGGCACCTCTTCCCCCAGGA | CCCCGACCCCTCCCCAGCGTGAATG | 0.01 | 0.18 | libA | screen |
sample4 | R1 | D7 | D4 | s4.allcounts.tsv.gz | s4.libcounts.tsv.gz | meta.csv.gz | meta_consequences.tsv.gz | CTGACTGGCACCTCTTCCCCCAGGA | CCCCGACCCCTCCCCAGCGTGAATG | 0.21 | 0.10 | libA | screen |
sample5 | R2 | D7 | D4 | s5.allcounts.tsv.gz | s5.libcounts.tsv.gz | meta.csv.gz | meta_consequences.tsv.gz | CTGACTGGCACCTCTTCCCCCAGGA | CCCCGACCCCTCCCCAGCGTGAATG | 0.11 | 0.02 | libA | screen |
sample6 | R3 | D7 | D4 | s6.allcounts.tsv.gz | s6.libcounts.tsv.gz | meta.csv.gz | meta_consequences.tsv.gz | CTGACTGGCACCTCTTCCCCCAGGA | CCCCGACCCCTCCCCAGCGTGAATG | 0.01 | 0.18 | libA | screen |
- please use the same headers in the example
- replicate, condition and ref_time_point are optional, but required for screen qc
- adapt5 and adapt3 are optional, please leave them blank if you don't have them, but required for reads with primers
- vep_anno, library_name and library_type are not necessary, leave them blank if not available
ID | NAME | SEQUENCE | LENGTH | COUNT | UNIQUE | SAMPLE |
---|---|---|---|---|---|---|
id1 | name1 | ACTTTTCT | 276 | 32 | 1 | sample1 |
id2 | name2 | ATCTTTCT | 275 | 132 | 0 | sample1 |
id3 | name3 | ATTCTTCT | 275 | 2 | 1 | sample1 |
- please use the same headers in the example
- please make sure library dependent sequences match with valiant meta file
- please refer to pyQUEST
SEQUENCE | LENGTH | COUNT |
---|---|---|
ACTTTTCT | 276 | 32 |
ATCTTTCT | 275 | 132 |
ATTCTTCT | 275 | 2 |
- please use the same headers in the example
- please refer to pyQUEST
Please use the VaLiAnT output file, refer to VaLiAnT
Please use one to one mapping file
(TOP)
All the files are in the same directory including library dependent counts, library independent counts, valiant meta csv, vep annotation and the sample sheet.
library(MAVEQC)
sge_objs <- import_sge_files("/path/to/input/directory", "sample_sheet.tsv")
(TOP)
Test datasets are not available now, will add them soon
output_dir <- "/path/to/output/directory"
samqc <- create_sampleqc_object(sge_objs)
samqc <- run_sample_qc(samqc, "plasmid")
qcplot_samqc_all(samqc, qc_type = "plasmid", plot_dir = output_dir)
qcout_samqc_all(samqc, qc_type = "plasmid", out_dir = output_dir)
(TOP)
This creates a html report concatenating all the results including figures and tables. Please make sure you have generated all the figures and tables, otherwise the report may be incomplete.
create_qc_reports("/path/to/sample/sheet", "plasmid", output_dir)
(TOP)
Reference samples must be assigned. MAVEQC automatically creates reference samples (maveqc_ref_time_point
and maveqc_ref_time_point_samples
) from the sample sheet using ref_time_point
and sampe_name
.
output_dir <- "/path/to/output/directory"
samqc <- create_sampleqc_object(sge_objs)
samqc <- run_sample_qc(samqc, "screen")
qcplot_samqc_all(samqc, qc_type = "screen", plot_dir = output_dir)
qcout_samqc_all(samqc, qc_type = "screen", out_dir = output_dir)
(TOP)
MAVEQC automatically creates the coldata (maveqc_deseq_coldata
) from sample sheet for Screen QC.
sample_name | replicate | condition |
---|---|---|
hgsm3_d4_r1 | R1 | D4 |
hgsm3_d7_r1 | R1 | D7 |
hgsm3_d15_r1 | R1 | D15 |
hgsm3_d4_r2 | R2 | D4 |
hgsm3_d7_r2 | R2 | D7 |
hgsm3_d15_r2 | R2 | D15 |
hgsm3_d4_r3 | R3 | D4 |
hgsm3_d7_r3 | R3 | D7 |
hgsm3_d15_r3 | R3 | D15 |
expqc <- create_experimentqc_object(samqc)
expqc <- run_experiment_qc(expqc)
qcplot_expqc_all(expqc, plot_dir = output_dir)
qcout_expqc_all(expqc, out_dir = output_dir)
(TOP)
This creates a html report concatenating all the results including figures and tables. Please make sure you have generated all the figures and tables, otherwise the report may be incomplete.
create_qc_reports("/path/to/sample/sheet", "screen", output_dir)
(TOP)
Pandoc is required to generate the R markdown report. Please download and install it from https://pandoc.org/installing.html
(TOP)
the version of apeglm must be >= 1.22.1, optimHess problem in the lower version like below.
Error in optimHess(par = init, fn = nbinomFn, gr = nbinomGr, x = x, y = y, :
non-finite value supplied by optim
(TOP)
When installing DESeq2, it may have error (Rlog1) on Mac M1 chip. Try cmd below to fix it.
export PKG_CPPFLAGS="-DHAVE_WORKING_LOG1P"
(TOP)