forked from apache/tvm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added tesnorizeation for avx2 based gemm. (apache#3982)
* Added tesnorizeation for avx2 based gemm. Summary: Tensorized the same region as avx512. Names produce 16x1 int32 results. Does by doing two sets of AVX2 instructions to do reduction on 8x4 int8 kernel with 1x4 data. Test Plan: on avx2 machine: python tests/python/contrib/test_gemm_avx2_acc32.py Reviewers: Subscribers: Tasks: Tags: * Fix lint errors. Removed commented out code. Summary: Test Plan: Reviewers: Subscribers: Tasks: Tags:
- Loading branch information
1 parent
9baff00
commit 23727eb
Showing
2 changed files
with
188 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,94 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint: disable=import-self, invalid-name, unused-argument, too-many-lines, len-as-condition | ||
|
||
import tvm | ||
import numpy as np | ||
from topi.x86.tensor_intrin import dot_16x1x16_int8_int8_int32_vnni | ||
from topi.x86.tensor_intrin import dot_1x4x16_int8_int8_int32_avx2 | ||
|
||
|
||
def test_avx2_int8_gemm_acc32(): | ||
m = 1024 | ||
n = 1024 | ||
k = 1024 | ||
|
||
X = tvm.placeholder((m, k), name='X', dtype="uint8") | ||
W = tvm.placeholder((n, k), name='W', dtype="int8") | ||
|
||
memory_ops = m * k + n * k + 2 * m * n | ||
gops_per_mm = 2 * m * n * k | ||
|
||
def verify(target="llvm -mcpu=core-avx2"): | ||
if not tvm.module.enabled(target): | ||
print("skip because %s is not enabled..." % target) | ||
return | ||
|
||
ctx = tvm.context(target, 0) | ||
pc = dot_1x4x16_int8_int8_int32_avx2() | ||
ak = tvm.reduce_axis((0, k), name='k') | ||
packedW = tvm.placeholder( | ||
(n // 16, 16 * (k // 4), 4), name='packedW', dtype="int8") | ||
|
||
t_fc = tvm.compute((m, n), lambda i, j: tvm.sum(X[i, ak].astype( | ||
"int32") * packedW[j // 16, (ak // 4) * 16 + j % 16, ak % 4].astype("int32"), axis=ak), name="F") | ||
t_sch = tvm.create_schedule(t_fc.op) | ||
a_x, a_y = t_fc.op.axis | ||
a_k, = t_fc.op.reduce_axis | ||
|
||
a_yo, a_yi = t_sch[t_fc].split(a_y, factor=16) | ||
a_xo, a_xi = t_sch[t_fc].split(a_x, factor=32) | ||
a_ko, a_ki = t_sch[t_fc].split(a_k, factor=4) | ||
a_koo, a_koi = t_sch[t_fc].split(a_ko, factor=4) | ||
t_sch[t_fc].reorder(a_yo, a_xo, a_xi, a_koo, a_koi, a_yi, a_ki) | ||
|
||
t_sch[t_fc].unroll(a_koi) | ||
t_sch[t_fc].tensorize(a_yi, pc) | ||
|
||
t_func = tvm.build(t_sch, [X, packedW, t_fc], target, name="intrinsic") | ||
t_evaluator = t_func.time_evaluator(t_func.entry_name, ctx, number=10) | ||
|
||
# generate the plain data | ||
a_ = np.random.uniform(1, 10, size=(m, k)).astype("uint8") | ||
b_ = np.random.uniform(1, 10, size=(n, k)).astype("int8") | ||
|
||
packW = np.random.uniform(1, 10, size=( | ||
n // 16, 16 * (k // 4), 4)).astype("int8") | ||
# This occurs in pre_compute stage | ||
for r_idx in range(n // 16): | ||
for s_idx in range(16 * (k // 4)): | ||
for t_idx in range(4): | ||
packW[r_idx][s_idx][t_idx] = b_[r_idx * 16 + s_idx % | ||
16][(s_idx // 16) * 4 + t_idx] | ||
|
||
x = tvm.nd.array(a_, ctx) | ||
w = tvm.nd.array(packW, ctx) | ||
y = tvm.nd.array(np.zeros((m, n), dtype="int32"), ctx) | ||
result = t_evaluator(x, w, y) | ||
|
||
gops_per_sec = gops_per_mm / result.mean / 1e9 | ||
# verify the correctness | ||
tvm.testing.assert_allclose(y.asnumpy(), np.dot(a_, b_.T), rtol=0) | ||
print('Tensorization: running time: {:.3f} ms, {:.2f} Gops/s'.format( | ||
result.mean * 1000, gops_per_sec)) | ||
|
||
verify() | ||
|
||
|
||
if __name__ == "__main__": | ||
test_avx2_int8_gemm_acc32() | ||
pass |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters