Description
In recent years, Semantic Web technologies have been used to record the data processing steps involved in producing climate products (i.e. maps, plots or any other climate research outcome stored in a file).
While Python packages such as rook
and ESMValTool simply define their own bespoke / narrow adaptation of the PROV / RDF data model to suit their own needs, there have been attempts to define a comprehensive ontology for climate products (e.g. Bedia et al 2019, Zhang et al., 2020).
As far as I can tell, the most widely used ontology is METACLIP (METAdata for CLImate Products; see their website, flyer and paper), which was initially developed for the Copernicus QA4Seas seasonal forecasting project and is now also being used for the VALUE downscaling initiative. The METACLIP developers work in R and have integrated their approach to provenance tracking into the climate4R package.
I'm wondering if there's any interest in trying to figure out how to incorporate provenance tracking into xarray? There isn't a Python implementation of METACLIP yet, but presumably one could implement the ontology using rdflib. @huard suggested cf-xarray might be a good place to start the conversation around this, but happy to move the discussion elsewhere if it would be more appropriate?