Skip to content
/ DeepHash Public
forked from thulab/DeepHash

An Open-Source Package for Deep Learning to Hash (DeepHash)

License

Notifications You must be signed in to change notification settings

xb534/DeepHash

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

49 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DeepHash

DeepHash is a lightweight deep learning to hash library that implements state-of-the-art deep hashing/quantization algorithms. We will implement more representative deep hashing models continuously according to our released deep hashing paper list. Specifically, we welcome other researchers to contribute deep hashing models into this toolkit based on our framework. We will announce the contribution in this project.

The implemented models include:

Note: DTQ and DCH are updated while DQN, DHN, DVSQ maybe outdated, feel free to touch us if you have any questions. We welcome others to contribute!

Requirements

  • Python3: Anaconda is recommended because it already contains a lot of packages:
conda create -n DeepHash python=3.6 anaconda
source activate DeepHash
  • Other packages:
conda install -y tensorflow-gpu
conda install -y -c conda-forge opencv

To import the pakcages implemented in ./DeepHash, we need to add the path of ./DeepHash to environment variables as:

export PYTHONPATH=/path/to/project/DeepHash/DeepHash:$PYTHONPATH

Data Preparation

In data/cifar10/train.txt, we give an example to show how to prepare image training data. In data/cifar10/test.txt and data/cifar10/database.txt, the list of testing and database images could be processed during predicting procedure. If you want to add other datasets as the input, you need to prepare train.txt, test.txt and database.txt as CIFAR-10 dataset.

What's more, We have put the whole cifar10 dataset including the images and data list in the release page. You can directly download it and unzip to data/cifar10 folder.

Make sure the tree of /path/to/project/data/cifar10 looks like this:

.
|-- database.txt
|-- test
|-- test.txt
|-- train
`-- train.txt

If you need run on NUSWIDE_81 and COCO, we recommend you to follow https://github.com/thuml/HashNet/tree/master/pytorch#datasets to prepare NUSWIDE_81 and COCO images.

For DVSQ model, you also need the word vector of the semantic labels. Here we use word2vec model pretrained on GoogleNews Dataset (e.g. https://github.com/mmihaltz/word2vec-GoogleNews-vectors), to extract the word embeddings for the labels of images, e.g. dog, cat and so on.

Get Started

Pre-trained model

You should manually download the model file of the Imagenet pre-tained AlexNet from here or from release page and unzip it to /path/to/project/DeepHash/architecture/pretrained_model.

Make sure the tree of /path/to/project/DeepHash/architecture looks like this:

├── __init__.py
├── pretrained_model
       └── reference_pretrain.npy

Training and Testing

The example of $method (DCH and DTQ) can be run like:

cd example/$method/
python train_val_script.py --gpus "0,1" --data-dir $PWD/../../data --"other parameters descirbe in train_val_script.py"

For DVSQ, DQN and DHN, please refer to the train_val.sh and train_val_script.py in the examples folder.

Citations

If you find DeepHash is useful for your research, please consider citing the following papers:

@InProceedings{cite:AAAI16DQN,
  Author = {Yue Cao and Mingsheng Long and Jianmin Wang and Han Zhu and Qingfu Wen},
  Publisher = {AAAI},
  Title = {Deep Quantization Network for Efficient Image Retrieval},
  Year = {2016}
}

@InProceedings{cite:AAAI16DHN,
  Author = {Han Zhu and Mingsheng Long and Jianmin Wang and Yue Cao},
  Publisher = {AAAI},
  Title = {Deep Hashing Network for Efficient Similarity Retrieval},
  Year = {2016}
}

@InProceedings{cite:CVPR17DVSQ,
  Title={Deep visual-semantic quantization for efficient image retrieval},
  Author={Cao, Yue and Long, Mingsheng and Wang, Jianmin and Liu, Shichen},
  Booktitle={CVPR},
  Year={2017}
}

@InProceedings{cite:CVPR18DCH,
  Title={Deep Cauchy Hashing for Hamming Space Retrieval},
  Author={Cao, Yue and Long, Mingsheng and Bin, Liu and Wang, Jianmin},
  Booktitle={CVPR},
  Year={2018}
}

@article{liu2018deep,
  title={Deep triplet quantization},
  author={Liu, Bin and Cao, Yue and Long, Mingsheng and Wang, Jianmin and Wang, Jingdong},
  journal={MM, ACM},
  year={2018}
}

Contacts

Maintainers of this library:

About

An Open-Source Package for Deep Learning to Hash (DeepHash)

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%