Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

transform: (stencil-tensorize-z-dimension) Tensorize arith.constant directly #2970

Merged
merged 8 commits into from
Aug 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
86 changes: 42 additions & 44 deletions tests/filecheck/transforms/stencil-tensorize-z-dimension.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -33,28 +33,27 @@ builtin.module {
// CHECK-NEXT: %1 = stencil.load %0 : !stencil.field<[-1,1023]x[-1,511]xtensor<512xf32>> -> !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %2 = stencil.external_load %b : memref<1024x512x512xf32> -> !stencil.field<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %3 = stencil.apply(%4 = %1 : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>) -> (!stencil.temp<[0,1022]x[0,510]xtensor<510xf32>>) {
// CHECK-NEXT: %5 = arith.constant 1.666600e-01 : f32
// CHECK-NEXT: %6 = stencil.access %4[1, 0] : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %7 = "tensor.extract_slice"(%6) <{"static_offsets" = array<i64: 0>, "static_sizes" = array<i64: 510>, "static_strides" = array<i64: 1>, "operandSegmentSizes" = array<i32: 1, 0, 0, 0>}> : (tensor<512xf32>) -> tensor<510xf32>
// CHECK-NEXT: %8 = stencil.access %4[-1, 0] : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %9 = "tensor.extract_slice"(%8) <{"static_offsets" = array<i64: 0>, "static_sizes" = array<i64: 510>, "static_strides" = array<i64: 1>, "operandSegmentSizes" = array<i32: 1, 0, 0, 0>}> : (tensor<512xf32>) -> tensor<510xf32>
// CHECK-NEXT: %10 = stencil.access %4[0, 0] : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %11 = "tensor.extract_slice"(%10) <{"static_offsets" = array<i64: 1>, "static_sizes" = array<i64: 510>, "static_strides" = array<i64: 1>, "operandSegmentSizes" = array<i32: 1, 0, 0, 0>}> : (tensor<512xf32>) -> tensor<510xf32>
// CHECK-NEXT: %12 = stencil.access %4[0, 0] : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %13 = "tensor.extract_slice"(%12) <{"static_offsets" = array<i64: -1>, "static_sizes" = array<i64: 510>, "static_strides" = array<i64: 1>, "operandSegmentSizes" = array<i32: 1, 0, 0, 0>}> : (tensor<512xf32>) -> tensor<510xf32>
// CHECK-NEXT: %14 = stencil.access %4[0, 1] : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %15 = "tensor.extract_slice"(%14) <{"static_offsets" = array<i64: 0>, "static_sizes" = array<i64: 510>, "static_strides" = array<i64: 1>, "operandSegmentSizes" = array<i32: 1, 0, 0, 0>}> : (tensor<512xf32>) -> tensor<510xf32>
// CHECK-NEXT: %16 = stencil.access %4[0, -1] : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %17 = "tensor.extract_slice"(%16) <{"static_offsets" = array<i64: 0>, "static_sizes" = array<i64: 510>, "static_strides" = array<i64: 1>, "operandSegmentSizes" = array<i32: 1, 0, 0, 0>}> : (tensor<512xf32>) -> tensor<510xf32>
// CHECK-NEXT: %18 = arith.addf %17, %15 : tensor<510xf32>
// CHECK-NEXT: %19 = arith.addf %18, %13 : tensor<510xf32>
// CHECK-NEXT: %20 = arith.addf %19, %11 : tensor<510xf32>
// CHECK-NEXT: %21 = arith.addf %20, %9 : tensor<510xf32>
// CHECK-NEXT: %22 = arith.addf %21, %7 : tensor<510xf32>
// CHECK-NEXT: %23 = tensor.empty() : tensor<510xf32>
// CHECK-NEXT: %24 = linalg.fill ins(%5 : f32) outs(%23 : tensor<510xf32>) -> tensor<510xf32>
// CHECK-NEXT: %25 = arith.mulf %22, %24 : tensor<510xf32>
// CHECK-NEXT: stencil.return %25 : tensor<510xf32>
// CHECK-NEXT: %5 = arith.constant dense<1.666600e-01> : tensor<510xf32>
// CHECK-NEXT: %6 = arith.constant 1.666600e-01 : f32
// CHECK-NEXT: %7 = stencil.access %4[1, 0] : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %8 = "tensor.extract_slice"(%7) <{"static_offsets" = array<i64: 0>, "static_sizes" = array<i64: 510>, "static_strides" = array<i64: 1>, "operandSegmentSizes" = array<i32: 1, 0, 0, 0>}> : (tensor<512xf32>) -> tensor<510xf32>
// CHECK-NEXT: %9 = stencil.access %4[-1, 0] : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %10 = "tensor.extract_slice"(%9) <{"static_offsets" = array<i64: 0>, "static_sizes" = array<i64: 510>, "static_strides" = array<i64: 1>, "operandSegmentSizes" = array<i32: 1, 0, 0, 0>}> : (tensor<512xf32>) -> tensor<510xf32>
// CHECK-NEXT: %11 = stencil.access %4[0, 0] : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %12 = "tensor.extract_slice"(%11) <{"static_offsets" = array<i64: 1>, "static_sizes" = array<i64: 510>, "static_strides" = array<i64: 1>, "operandSegmentSizes" = array<i32: 1, 0, 0, 0>}> : (tensor<512xf32>) -> tensor<510xf32>
// CHECK-NEXT: %13 = stencil.access %4[0, 0] : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %14 = "tensor.extract_slice"(%13) <{"static_offsets" = array<i64: -1>, "static_sizes" = array<i64: 510>, "static_strides" = array<i64: 1>, "operandSegmentSizes" = array<i32: 1, 0, 0, 0>}> : (tensor<512xf32>) -> tensor<510xf32>
// CHECK-NEXT: %15 = stencil.access %4[0, 1] : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %16 = "tensor.extract_slice"(%15) <{"static_offsets" = array<i64: 0>, "static_sizes" = array<i64: 510>, "static_strides" = array<i64: 1>, "operandSegmentSizes" = array<i32: 1, 0, 0, 0>}> : (tensor<512xf32>) -> tensor<510xf32>
// CHECK-NEXT: %17 = stencil.access %4[0, -1] : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %18 = "tensor.extract_slice"(%17) <{"static_offsets" = array<i64: 0>, "static_sizes" = array<i64: 510>, "static_strides" = array<i64: 1>, "operandSegmentSizes" = array<i32: 1, 0, 0, 0>}> : (tensor<512xf32>) -> tensor<510xf32>
// CHECK-NEXT: %19 = arith.addf %18, %16 : tensor<510xf32>
// CHECK-NEXT: %20 = arith.addf %19, %14 : tensor<510xf32>
// CHECK-NEXT: %21 = arith.addf %20, %12 : tensor<510xf32>
// CHECK-NEXT: %22 = arith.addf %21, %10 : tensor<510xf32>
// CHECK-NEXT: %23 = arith.addf %22, %8 : tensor<510xf32>
// CHECK-NEXT: %24 = arith.mulf %23, %5 : tensor<510xf32>
// CHECK-NEXT: stencil.return %24 : tensor<510xf32>
// CHECK-NEXT: }
// CHECK-NEXT: stencil.store %3 to %2 (<[0, 0], [1022, 510]>) : !stencil.temp<[0,1022]x[0,510]xtensor<510xf32>> to !stencil.field<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: func.return
Expand Down Expand Up @@ -86,28 +85,27 @@ builtin.module {
// CHECK: func.func @gauss_seidel_func(%a : !stencil.field<[-1,1023]x[-1,511]xtensor<512xf32>>, %b : !stencil.field<[-1,1023]x[-1,511]xtensor<512xf32>>) {
// CHECK-NEXT: %0 = stencil.load %a : !stencil.field<[-1,1023]x[-1,511]xtensor<512xf32>> -> !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %1 = stencil.apply(%2 = %0 : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>) -> (!stencil.temp<[0,1022]x[0,510]xtensor<510xf32>>) {
// CHECK-NEXT: %3 = arith.constant 1.666600e-01 : f32
// CHECK-NEXT: %4 = stencil.access %2[1, 0] : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %5 = "tensor.extract_slice"(%4) <{"static_offsets" = array<i64: 0>, "static_sizes" = array<i64: 510>, "static_strides" = array<i64: 1>, "operandSegmentSizes" = array<i32: 1, 0, 0, 0>}> : (tensor<512xf32>) -> tensor<510xf32>
// CHECK-NEXT: %6 = stencil.access %2[-1, 0] : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %7 = "tensor.extract_slice"(%6) <{"static_offsets" = array<i64: 0>, "static_sizes" = array<i64: 510>, "static_strides" = array<i64: 1>, "operandSegmentSizes" = array<i32: 1, 0, 0, 0>}> : (tensor<512xf32>) -> tensor<510xf32>
// CHECK-NEXT: %8 = stencil.access %2[0, 0] : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %9 = "tensor.extract_slice"(%8) <{"static_offsets" = array<i64: 1>, "static_sizes" = array<i64: 510>, "static_strides" = array<i64: 1>, "operandSegmentSizes" = array<i32: 1, 0, 0, 0>}> : (tensor<512xf32>) -> tensor<510xf32>
// CHECK-NEXT: %10 = stencil.access %2[0, 0] : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %11 = "tensor.extract_slice"(%10) <{"static_offsets" = array<i64: -1>, "static_sizes" = array<i64: 510>, "static_strides" = array<i64: 1>, "operandSegmentSizes" = array<i32: 1, 0, 0, 0>}> : (tensor<512xf32>) -> tensor<510xf32>
// CHECK-NEXT: %12 = stencil.access %2[0, 1] : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %13 = "tensor.extract_slice"(%12) <{"static_offsets" = array<i64: 0>, "static_sizes" = array<i64: 510>, "static_strides" = array<i64: 1>, "operandSegmentSizes" = array<i32: 1, 0, 0, 0>}> : (tensor<512xf32>) -> tensor<510xf32>
// CHECK-NEXT: %14 = stencil.access %2[0, -1] : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %15 = "tensor.extract_slice"(%14) <{"static_offsets" = array<i64: 0>, "static_sizes" = array<i64: 510>, "static_strides" = array<i64: 1>, "operandSegmentSizes" = array<i32: 1, 0, 0, 0>}> : (tensor<512xf32>) -> tensor<510xf32>
// CHECK-NEXT: %16 = arith.addf %15, %13 : tensor<510xf32>
// CHECK-NEXT: %17 = arith.addf %16, %11 : tensor<510xf32>
// CHECK-NEXT: %18 = arith.addf %17, %9 : tensor<510xf32>
// CHECK-NEXT: %19 = arith.addf %18, %7 : tensor<510xf32>
// CHECK-NEXT: %20 = arith.addf %19, %5 : tensor<510xf32>
// CHECK-NEXT: %21 = tensor.empty() : tensor<510xf32>
// CHECK-NEXT: %22 = linalg.fill ins(%3 : f32) outs(%21 : tensor<510xf32>) -> tensor<510xf32>
// CHECK-NEXT: %23 = arith.mulf %20, %22 : tensor<510xf32>
// CHECK-NEXT: stencil.return %23 : tensor<510xf32>
// CHECK-NEXT: %3 = arith.constant dense<1.666600e-01> : tensor<510xf32>
// CHECK-NEXT: %4 = arith.constant 1.666600e-01 : f32
// CHECK-NEXT: %5 = stencil.access %2[1, 0] : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %6 = "tensor.extract_slice"(%5) <{"static_offsets" = array<i64: 0>, "static_sizes" = array<i64: 510>, "static_strides" = array<i64: 1>, "operandSegmentSizes" = array<i32: 1, 0, 0, 0>}> : (tensor<512xf32>) -> tensor<510xf32>
// CHECK-NEXT: %7 = stencil.access %2[-1, 0] : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %8 = "tensor.extract_slice"(%7) <{"static_offsets" = array<i64: 0>, "static_sizes" = array<i64: 510>, "static_strides" = array<i64: 1>, "operandSegmentSizes" = array<i32: 1, 0, 0, 0>}> : (tensor<512xf32>) -> tensor<510xf32>
// CHECK-NEXT: %9 = stencil.access %2[0, 0] : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %10 = "tensor.extract_slice"(%9) <{"static_offsets" = array<i64: 1>, "static_sizes" = array<i64: 510>, "static_strides" = array<i64: 1>, "operandSegmentSizes" = array<i32: 1, 0, 0, 0>}> : (tensor<512xf32>) -> tensor<510xf32>
// CHECK-NEXT: %11 = stencil.access %2[0, 0] : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %12 = "tensor.extract_slice"(%11) <{"static_offsets" = array<i64: -1>, "static_sizes" = array<i64: 510>, "static_strides" = array<i64: 1>, "operandSegmentSizes" = array<i32: 1, 0, 0, 0>}> : (tensor<512xf32>) -> tensor<510xf32>
// CHECK-NEXT: %13 = stencil.access %2[0, 1] : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %14 = "tensor.extract_slice"(%13) <{"static_offsets" = array<i64: 0>, "static_sizes" = array<i64: 510>, "static_strides" = array<i64: 1>, "operandSegmentSizes" = array<i32: 1, 0, 0, 0>}> : (tensor<512xf32>) -> tensor<510xf32>
// CHECK-NEXT: %15 = stencil.access %2[0, -1] : !stencil.temp<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: %16 = "tensor.extract_slice"(%15) <{"static_offsets" = array<i64: 0>, "static_sizes" = array<i64: 510>, "static_strides" = array<i64: 1>, "operandSegmentSizes" = array<i32: 1, 0, 0, 0>}> : (tensor<512xf32>) -> tensor<510xf32>
// CHECK-NEXT: %17 = arith.addf %16, %14 : tensor<510xf32>
// CHECK-NEXT: %18 = arith.addf %17, %12 : tensor<510xf32>
// CHECK-NEXT: %19 = arith.addf %18, %10 : tensor<510xf32>
// CHECK-NEXT: %20 = arith.addf %19, %8 : tensor<510xf32>
// CHECK-NEXT: %21 = arith.addf %20, %6 : tensor<510xf32>
// CHECK-NEXT: %22 = arith.mulf %21, %3 : tensor<510xf32>
// CHECK-NEXT: stencil.return %22 : tensor<510xf32>
// CHECK-NEXT: }
// CHECK-NEXT: stencil.store %1 to %b (<[0, 0], [1022, 510]>) : !stencil.temp<[0,1022]x[0,510]xtensor<510xf32>> to !stencil.field<[-1,1023]x[-1,511]xtensor<512xf32>>
// CHECK-NEXT: func.return
Expand Down
100 changes: 69 additions & 31 deletions xdsl/transforms/experimental/stencil_tensorize_z_dimension.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
from xdsl.dialects.arith import (
Addf,
BinaryOperation,
Constant,
Divf,
FloatingPointLikeBinaryOp,
Mulf,
Expand All @@ -16,6 +17,7 @@
AnyFloat,
ArrayAttr,
ContainerType,
DenseIntOrFPElementsAttr,
IntAttr,
ModuleOp,
ShapedType,
Expand All @@ -40,6 +42,8 @@
from xdsl.ir import (
Attribute,
Operation,
OpResult,
SSAValue,
)
from xdsl.passes import ModulePass
from xdsl.pattern_rewriter import (
Expand Down Expand Up @@ -135,42 +139,63 @@ def match_and_rewrite(self, op: AccessOp, rewriter: PatternRewriter, /):
rewriter.replace_matched_op(extract)


def arithBinaryOpTensorize(
op: FloatingPointLikeBinaryOp,
rewriter: PatternRewriter,
/,
):
type_constructor = type(op)
if is_tensor(op.result.type):
return
if is_tensor(op.lhs.type) and is_tensor(op.rhs.type):
rewriter.replace_matched_op(
type_constructor(op.lhs, op.rhs, flags=None, result_type=op.lhs.type)
)
elif is_tensor(op.lhs.type) and is_scalar(op.rhs.type):
emptyop = EmptyOp((), op.lhs.type)
fillop = FillOp((op.rhs,), (emptyop.results[0],), (op.lhs.type,))
rewriter.insert_op(emptyop, InsertPoint.before(op))
rewriter.insert_op(fillop, InsertPoint.before(op))
rewriter.replace_matched_op(
type_constructor(op.lhs, fillop, flags=None, result_type=op.lhs.type)
)
elif is_scalar(op.lhs.type) and is_tensor(op.rhs.type):
emptyop = EmptyOp((), op.rhs.type)
fillop = FillOp((op.lhs,), (emptyop.results[0],), (op.rhs.type,))
rewriter.insert_op(emptyop, InsertPoint.before(op))
rewriter.insert_op(fillop, InsertPoint.before(op))
rewriter.replace_matched_op(
type_constructor(fillop, op.rhs, flags=None, result_type=op.rhs.type)
)


class ArithOpTensorize(RewritePattern):
"""
Tensorises arith binary ops.
If both operands are tensor types, rebuilds the op with matching result type.
If one operand is scalar and an `arith.constant`, create a tensor constant directly.
If one operand is scalar and not an `arith.constant`, create an empty tensor and fill it with the scalar value.
"""

@op_type_rewrite_pattern
def match_and_rewrite(
self, op: Addf | Subf | Mulf | Divf, rewriter: PatternRewriter, /
):
arithBinaryOpTensorize(op, rewriter)
type_constructor = type(op)
if is_tensor(op.result.type):
return
if is_tensor(op.lhs.type) and is_tensor(op.rhs.type):
rewriter.replace_matched_op(
type_constructor(op.lhs, op.rhs, flags=None, result_type=op.lhs.type)
)
elif is_tensor(op.lhs.type) and is_scalar(op.rhs.type):
new_rhs = ArithOpTensorize._rewrite_scalar_operand(
op.rhs, op.lhs.type, op, rewriter
)
rewriter.replace_matched_op(
type_constructor(op.lhs, new_rhs, flags=None, result_type=op.lhs.type)
)
elif is_scalar(op.lhs.type) and is_tensor(op.rhs.type):
new_lhs = ArithOpTensorize._rewrite_scalar_operand(
op.lhs, op.rhs.type, op, rewriter
)
rewriter.replace_matched_op(
type_constructor(new_lhs, op.rhs, flags=None, result_type=op.rhs.type)
)

@staticmethod
def _rewrite_scalar_operand(
scalar_op: SSAValue,
dest_typ: TensorType[Attribute],
op: FloatingPointLikeBinaryOp,
rewriter: PatternRewriter,
) -> SSAValue:
"""
Rewrites a scalar operand into a tensor.
If it is a constant, create a corresponding tensor constant.
If it is not a constant, create an empty tensor and `linalg.fill` it with the scalar value.
"""
if isinstance(scalar_op, OpResult) and isinstance(scalar_op.op, Constant):
tens_const = Constant(
DenseIntOrFPElementsAttr([dest_typ, ArrayAttr([scalar_op.op.value])])
)
rewriter.insert_op(tens_const, InsertPoint.before(scalar_op.op))
return tens_const.result
emptyop = EmptyOp((), dest_typ)
fillop = FillOp((scalar_op,), (emptyop.tensor,), (dest_typ,))
rewriter.insert_op(emptyop, InsertPoint.before(op))
rewriter.insert_op(fillop, InsertPoint.before(op))
return fillop.res[0]


@dataclass(frozen=True)
Expand Down Expand Up @@ -361,6 +386,18 @@ def match_and_rewrite(self, op: FillOp, rewriter: PatternRewriter, /):
)


class ConstOpUpdateShape(RewritePattern):
@op_type_rewrite_pattern
def match_and_rewrite(self, op: Constant, rewriter: PatternRewriter, /):
if is_tensor(op.result.type):
if typ := get_required_result_type(op):
if needs_update_shape(op.result.type, typ):
assert isinstance(op.value, DenseIntOrFPElementsAttr)
rewriter.replace_matched_op(
Constant(DenseIntOrFPElementsAttr([typ, op.value.data]))
)


@dataclass(frozen=True)
class BackpropagateStencilShapes(ModulePass):
"""
Expand All @@ -379,6 +416,7 @@ def apply(self, ctx: MLContext, op: builtin.ModuleOp) -> None:
EmptyOpUpdateShape(),
FillOpUpdateShape(),
ArithOpUpdateShape(),
ConstOpUpdateShape(),
]
),
walk_reverse=True,
Expand Down
Loading