-
Notifications
You must be signed in to change notification settings - Fork 79
[WIP] xDSL on Archer2
George Bisbas edited this page Aug 4, 2023
·
6 revisions
Archer2 by default does not offer python 3.11 So we build it from source in order to use with xDSL
Using:
- https://docs.archer2.ac.uk/user-guide/python/
- https://ubuntuhandbook.org/index.php/2021/10/compile-install-python-3-10-ubuntu/
module load PrgEnv-gnu
wget -c https://www.python.org/ftp/python/3.11.0/Python-3.11.0.tar.xz
tar -Jxf Python-3.11.0.tar.xz
cd Python-3.11.0/
mkdir ../mypython3.10
./configure --enable-optimizations --prefix=/work//d011/d011/gbisbas/mypython3.10/
make -j4
make install
Then add to path:
export PATH="/work/d011/d011/gbisbas/mypython3.10":$PATH
./mypython3.10/bin/python3.11 --version
# Python 3.11.0
# Cerate new virtual env
mkdir ../environments/python311
./bin/python3.11 -m venv ../environments/python311/
source environments/python311/bin/activate
export SHARED=/work/d011/d011/shared
module use $SHARED/modules
module load sc-23
cd $SHARED
cd software/devito/fast/
Template file:
#!/bin/bash
# Slurm job options (job-name, compute nodes, job time)
#SBATCH --job-name=Devito_MPI_Job
#SBATCH --time=00:10:00
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=8
#SBATCH --cpus-per-task=16
#SBATCH --switches=1@360 # Each group has 128 nodes
# Replace [budget code] below with your project code (e.g. t01)
#SBATCH --account=d011
#SBATCH --partition=standard
#SBATCH --qos=standard
#SBATCH -o ./jobs-output/output-1-full.%j.out # STDOUT
# Propagate the cpus-per-task setting from script to srun commands
# By default, Slurm does not propagate this setting from the sbatch
# options to srun commands in the job script. If this is not done,
# process/thread pinning may be incorrect leading to poor performance
export SRUN_CPUS_PER_TASK=$SLURM_CPUS_PER_TASK
export SHARED=/work/d011/d011/shared
module use $SHARED/modules
module load sc-23
module load cray-mpich
cd $SHARED/software/devito/fast
# Set the number of threads to 16 and specify placement
# There are 16 OpenMP threads per MPI process
# We want one thread per physical core
export OMP_NUM_THREADS=16
export OMP_PLACES=cores
# Devito-specific env variables
export DEVITO_ARCH=cray
export DEVITO_LANGUAGE=openmp
export DEVITO_LOGGING=DEBUG
export DEVITO_MPI=1
export DEVITO_AUTOTUNING=aggressive
# export DEVITO_PROFILING=advanced2
# Archer specific
# export MPICH_OFI_STARTUP_CONNECT=1
# export MPICH_OFI_RMA_STARTUP_CONNECT=1
export FI_OFI_RXM_SAR_LIMIT=524288
export FI_OFI_RXM_BUFFER_SIZE=131072
export MPICH_SMP_SINGLE_COPY_SIZE=16384
export CRAY_OMP_CHECK_AFFINITY=TRUE
export SLURM_CPU_FREQ_REQ=2250000
# Launch the parallel job
# Using nodes x ntasks-per-node MPI processes
# 8 MPI processes per node
# 16 OpenMP threads per MPI process
# Additional srun options to pin one thread per physical core
srun --distribution=block:block --hint=nomultithread python3 run_benchmark.py 2d5pt -nt 100 --xdsl --devito --openmp --mpi -d 2000 2000 --repeat 1