- Features
- Examples
- Compatibility list
- Build
- How to use in your project?
- API
- Specials on embedded platform
- How to make port?
- Contact
- VS.
- Thanks
- "s_task" is a coroutine library written in pure C and asm (from boost library), without C++ required.
- supports various platforms, such as windows, linux, android, macos, stm32, stm8, arduino, etc.
- supports keywords __await__ and __async__ . 🚩 For functions that may switch to other tasks, call it with 1st parameter __await__, for the caller function of which, define the 1st parameter as __async__, which make it is clear to know about context switching.
- works with libuv for network programming.
- "chan", "mutex" and "event" for communication between tasks.
- on embedded platfrom (stm32/stm8/m051/arduino,etc), "s_task" is a special RTOS --
- no dynamical memory allocation
- very small memory footprint ( increased by ROM<1.5K, RAM<128 bytes + task stack size)
Example 1 - simple task creation
#include <stdio.h>
#include "s_task.h"
void* g_stack_main[64 * 1024];
void* g_stack0[64 * 1024];
void* g_stack1[64 * 1024];
void sub_task(__async__, void* arg) {
int i;
int n = (int)(size_t)arg;
for (i = 0; i < 5; ++i) {
printf("task %d, delay seconds = %d, i = %d\n", n, n, i);
s_task_msleep(__await__, n * 1000);
//s_task_yield(__await__);
}
}
void main_task(__async__, void* arg) {
int i;
s_task_create(g_stack0, sizeof(g_stack0), sub_task, (void*)1);
s_task_create(g_stack1, sizeof(g_stack1), sub_task, (void*)2);
for (i = 0; i < 4; ++i) {
printf("task_main arg = %p, i = %d\n", arg, i);
s_task_yield(__await__);
}
s_task_join(__await__, g_stack0);
s_task_join(__await__, g_stack1);
}
int main(int argc, char* argv) {
s_task_init_system();
s_task_create(g_stack_main, sizeof(g_stack_main), main_task, (void*)(size_t)argc);
s_task_join(__await__, g_stack_main);
printf("all task is over\n");
return 0;
}
Example 2 - asynchronized http client without callback function.
void main_task(__async__, void *arg) {
uv_loop_t* loop = (uv_loop_t*)arg;
const char *HOST = "baidu.com";
const unsigned short PORT = 80;
//<1> resolve host
struct addrinfo* addr = s_uv_getaddrinfo(__await__,
loop,
HOST,
NULL,
NULL);
if (addr == NULL) {
fprintf(stderr, "can not resolve host %s\n", HOST);
goto out0;
}
if (addr->ai_addr->sa_family == AF_INET) {
struct sockaddr_in* sin = (struct sockaddr_in*)(addr->ai_addr);
sin->sin_port = htons(PORT);
}
else if (addr->ai_addr->sa_family == AF_INET6) {
struct sockaddr_in6* sin = (struct sockaddr_in6*)(addr->ai_addr);
sin->sin6_port = htons(PORT);
}
//<2> connect
uv_tcp_t tcp_client;
int ret = uv_tcp_init(loop, &tcp_client);
if (ret != 0)
goto out1;
ret = s_uv_tcp_connect(__await__, &tcp_client, addr->ai_addr);
if (ret != 0)
goto out2;
//<3> send request
const char *request = "GET / HTTP/1.0\r\n\r\n";
uv_stream_t* tcp_stream = (uv_stream_t*)&tcp_client;
s_uv_write(__await__, tcp_stream, request, strlen(request));
//<4> read response
ssize_t nread;
char buf[1024];
while (true) {
ret = s_uv_read(__await__, tcp_stream, buf, sizeof(buf), &nread);
if (ret != 0) break;
// output response to console
fwrite(buf, 1, nread, stdout);
}
//<5> close connections
out2:;
s_uv_close(__await__, (uv_handle_t*)&tcp_client);
out1:;
uv_freeaddrinfo(addr);
out0:;
}
Example 3 - control LED with multitasking on ardinuo
#include <stdio.h>
#include "src/s_task/s_task.h"
//This program demonstrates three tasks:
// 1) main_task -
// Wait 10 seconds and set flag g_exit.
// After all tasks finished, set LED on always.
// 2) sub_task_fast_blinking -
// Set led blinking fast
// 3) sub_task_set_low -
// Set led off for 1 second, and then blinking for 3 seconds.
void setup() {
// put your setup code here, to run once:
pinMode(LED_BUILTIN, OUTPUT);
}
char g_stack0[384];
char g_stack1[384];
volatile bool g_is_low = false;
volatile bool g_exit = false;
void sub_task_fast_blinking(__async__, void* arg) {
while(!g_exit) {
if(!g_is_low)
digitalWrite(LED_BUILTIN, HIGH); // turn the LED on
s_task_msleep(__await__, 50); // wait for 50 milliseconds
digitalWrite(LED_BUILTIN, LOW); // turn the LED off
s_task_msleep(__await__, 50); // wait for 50 milliseconds
}
}
void sub_task_set_low(__async__, void* arg) {
while(!g_exit) {
g_is_low = true; // stop fast blinking
digitalWrite(LED_BUILTIN, LOW); // turn the LED off
s_task_sleep(__await__, 1); // wait for 1 second
g_is_low = false; // start fast blinking
s_task_sleep(__await__, 3); // wait for 3 seconds
}
}
void main_task(__async__, void* arg) {
// create two sub tasks
s_task_create(g_stack0, sizeof(g_stack0), sub_task_fast_blinking, NULL);
s_task_create(g_stack1, sizeof(g_stack1), sub_task_set_low, NULL);
// wait for 10 seconds
s_task_sleep(__await__, 10);
g_exit = true;
// wait two sub tasks return
s_task_join(__await__, g_stack0);
s_task_join(__await__, g_stack1);
}
void loop() {
s_task_init_system();
main_task(__await__, NULL);
// turn the LED on always
digitalWrite(LED_BUILTIN, HIGH);
while(1);
}
"s_task" can run as standalone coroutine library, or work with library libuv (compiling with macro USE_LIBUV).
Platform | coroutine | libuv |
---|---|---|
Windows | ✔️ | ✔️ |
Linux | ✔️ | ✔️ |
MacOS | ✔️ | ✔️ |
FreeBSD (12.1, x64) | ✔️ | ✔️ |
Android | ✔️ | ✔️ |
MingW (https://www.msys2.org/) | ✔️ | ✔️ |
ARMv6-M (M051, Raspberry Pi Pico) | ✔️ | ❌ |
ARMv7-M (STM32F103, STM32F302) | ✔️ | ❌ |
STM8 (STM8S103, STM8L051F3) | ✔️ | ❌ |
riscv32 (GD32VF103) | ✔️ | ❌ |
Arduino UNO (AVR MEGA328P) | ✔️ | ❌ |
Arduino DUE (ATSAM3X8E) | ✔️ | ❌ |
linux tested on
- i686 (ubuntu-16.04)
- x86_64 (centos-8.1)
- arm (raspiberry 32bit)
- aarch64 (① raspiberry 64bit, ② ubuntu 14.04 / centos7.6 on huawei Kunpeng920)
- mipsel (openwrt ucLinux 3.10.14 for MT7628)
- mips64 (fedora for loongson 3A-4000)
- ppc64 / ppc64le (centos-7.8.2003 altarch)
- riscv64 (jslinux)
git clone https://github.com/xhawk18/s_task.git
cd s_task/build/
cmake .
make
If need cross compiler, please set argument CMAKE_C_COMPILER when calling "cmake ." above, for example --
cmake . -DCMAKE_C_COMPILER=aarch64-linux-gnu-gcc
Platform | Project | Tool chain |
---|---|---|
Windows | build\windows\s_task.sln | visual studio 2019 |
Android | build\android\cross_build_arm*.sh | android ndk 20, API level 21 (test in termux) |
STM8S103 | build\stm8s103\Project.eww | IAR workbench for STM8 |
STM8L051F3 | build\stm8l05x\Project.eww | IAR workbench for STM8 |
STM32F103 | build\stm32f103\arcc\Project.uvproj | Keil uVision5 |
STM32F103 | build\stm32f103\gcc\Project.uvproj | arm-none-eabi-gcc |
STM32F302 | build\stm32f302\Project.uvporj | Keil uVision5 |
M051 | build\m051\Project.uvporj | Keil uVision5 |
Raspberry Pi Pico | build\raspberrypi_pico\CMakeLists.txt | pico-sdk |
GD32VF103 | build\gd32vf103\ | VSCode + PlatformIO |
ATmega328P | build\atmega328p\atmega328p.atsln | Atmel Studio 7.0 |
Arduino UNO Arduino DUE |
build\arduino\arduino.ino | Arduino IDE |
On linux/unix like system, after cmake build, you may get the libraries for your project
- add libs_task.a to your project
- #include "s_task.h"
- build with predefined macro USE_LIBUV
On arduino, copy all source files (*.h, *.c) in folder "include" and "src" into your arduino project's subfolder src/s_task/. Please take a look at the folder structure of "build/arduino/".
On windows or other system, please find the project in folder "build" as the project template.
/*
* Return values --
* For all functions marked by __async__ and hava an int return value, will
* return 0 on waiting successfully,
* return -1 on waiting cancalled by s_task_cancel_wait() called by other task.
*/
/* Function type for task entrance */
typedef void(*s_task_fn_t)(__async__, void *arg);
/* System initialization (without USE_LIBUV defined) */
void s_task_init_system();
/* System initialization (with USE_LIBUV defined) */
void s_task_init_uv_system(uv_loop_t *loop);
/* Create a new task */
void s_task_create(void *stack, size_t stack_size, s_task_fn_t entry, void *arg);
/* Wait a task to exit */
int s_task_join(__async__, void *stack);
/* Sleep in milliseconds */
int s_task_msleep(__async__, uint32_t msec);
/* Sleep in seconds */
int s_task_sleep(__async__, uint32_t sec);
/* Yield current task */
void s_task_yield(__async__);
/* Cancel task waiting and make it running */
void s_task_cancel_wait(void* stack);
/*
* macro: Declare the chan variable
* name: name of the chan
* TYPE: type of element in the chan
* count: max count of element buffer in the chan
*/
s_chan_declare(name,TYPE,count);
/*
* macro: Initialize the chan (parameters same as what's in s_declare_chan).
* To make a chan, we need to use "s_chan_declare" and then call "s_chan_init".
*/
s_chan_init(name,TYPE,count);
/*
* Put element into chan
* return 0 on chan put successfully
* return -1 on chan cancelled
*/
int s_chan_put(__async__, s_chan_t *chan, const void *in_object);
/*
* Put number of elements into chan
* return 0 on chan put successfully
* return -1 on chan cancelled
*/
int s_chan_put_n(__async__, s_chan_t *chan, const void *in_object, uint16_t number);
/*
* Get element from chan
* return 0 on chan get successfully
* return -1 on chan cancelled
*/
int s_chan_get(__async__, s_chan_t *chan, void *out_object);
/*
* Get number of elements from chan
* return 0 on chan get successfully
* return -1 on chan cancelled
*/
int s_chan_get_n(__async__, s_chan_t *chan, void *out_object, uint16_t number);
/* Initialize a mutex */
void s_mutex_init(s_mutex_t *mutex);
/* Lock the mutex */
int s_mutex_lock(__async__, s_mutex_t *mutex);
/* Unlock the mutex */
void s_mutex_unlock(s_mutex_t *mutex);
/* Initialize a wait event */
void s_event_init(s_event_t *event);
/* Wait event */
int s_event_wait(__async__, s_event_t *event);
/* Set event */
void s_event_set(s_event_t *event);
/* Wait event with timeout */
int s_event_wait_msec(__async__, s_event_t *event, uint32_t msec);
/* Wait event with timeout */
int s_event_wait_sec(__async__, s_event_t *event, uint32_t sec);
API on embedded platform
/* Task puts element into chan and waits interrupt to read the chan */
void s_chan_put__to_irq(__async__, s_chan_t *chan, const void *in_object);
/* Task puts number of elements into chan and waits interrupt to read the chan */
void s_chan_put_n__to_irq(__async__, s_chan_t *chan, const void *in_object, uint16_t number);
/* Task waits interrupt to write the chan and then gets element from chan */
void s_chan_get__from_irq(__async__, s_chan_t *chan, void *out_object);
/* Task waits interrupt to write the chan and then gets number of elements from chan */
void s_chan_get_n__from_irq(__async__, s_chan_t *chan, void *out_object, uint16_t number);
/*
* Interrupt writes element into the chan,
* return number of element was written into chan
*/
uint16_t s_chan_put__in_irq(s_chan_t *chan, const void *in_object);
/*
* Interrupt writes number of elements into the chan,
* return number of element was written into chan
*/
uint16_t s_chan_put_n__in_irq(s_chan_t *chan, const void *in_object, uint16_t number);
/*
* Interrupt reads element from chan,
* return number of element was read from chan
*/
uint16_t s_chan_get__in_irq(s_chan_t *chan, void *out_object);
/*
* Interrupt reads number of elements from chan,
* return number of element was read from chan
*/
uint16_t s_chan_get_n__in_irq(s_chan_t *chan, void *out_object, uint16_t number);
/*
* Wait event from irq, disable irq before call this function!
* S_IRQ_DISABLE()
* ...
* s_event_wait__from_irq(...)
* ...
* S_IRQ_ENABLE()
*/
int s_event_wait__from_irq(__async__, s_event_t *event);
/*
* Wait event from irq, disable irq before call this function!
* S_IRQ_DISABLE()
* ...
* s_event_wait_msec__from_irq(...)
* ...
* S_IRQ_ENABLE()
*/
int s_event_wait_msec__from_irq(__async__, s_event_t *event, uint32_t msec);
/*
* Wait event from irq, disable irq before call this function!
* S_IRQ_DISABLE()
* ...
* s_event_wait_sec__from_irq(...)
* ...
* S_IRQ_ENABLE()
*/
int s_event_wait_sec__from_irq(__async__, s_event_t *event, uint32_t sec);
/* Set event in interrupt */
void s_event_set__in_irq(s_event_t *event);
Low power mode
If there's no code in function "my_on_idle", the program will run in busy wait mode, which may cause CPU 100% occupied. But we can avoid this and support low power mode by adding correct sleeping instructions in function my_on_idle.
Now we have do that on Windows/Linux/MacOS and Android.
On embedded platform without OS, we may not fully implement low power mode. Please check function "my_on_idle" for the corresponding platform if you want to optimize the power consumption.
void my_on_idle(uint64_t max_idle_ms) {
/* Add code here to make CPU run into sleep mode,
the maximum sleeping time is "max_idle_ms" milliseconds. */
}
使用中有任何问题或建议,欢迎QQ加群 567780316 交流。
- coro: http://www.goron.de/~froese/coro/
- coroutine(a asymmetric coroutine library for C): https://github.com/cloudwu/coroutine
- coroutine(a asymmetric coroutine (lua like) with fixed-size stack): https://github.com/xphh/coroutine
- coroutine(coroutine library with pthread-like interface in pure C): https://github.com/Marcus366/coroutine
- coroutines(A lightweight coroutine library written in C and assembler): https://github.com/xya/coroutines
- fcontext: https://github.com/reginaldl/fcontext
- hev-task-system: https://github.com/heiher/hev-task-system
- libaco: https://github.com/hnes/libaco
- libconcurrency: http://code.google.com/p/libconcurrency/
- libconcurrent: https://github.com/sharow/libconcurrent
- libcoro: http://software.schmorp.de/pkg/libcoro.html
- libcoroutine: https://github.com/stevedekorte/coroutine
- libfiber: http://www.rkeene.org/projects/info/wiki/22
- libtask: https://code.google.com/p/libtask/
- libwire: https://github.com/baruch/libwire
- micro: https://github.com/mikewei/micoro
- mill: https://github.com/sustrik/mill
- Portable Coroutine Library (PCL): http://xmailserver.org/libpcl.html
- wooley cmake + vc building.