The Baseline Codes for the paper "The MI-Motion Dataset and Benchmark for 3D Multi-Person Motion Prediction"
Xiaogang Peng, Xiao Zhou, Yikai Luo, Hao Wen, Zizhao Wu*
Paper | Video | Data | Project Page
- [2022/06/01]: The codes of SocialTGCN and other baselines are released.
The MI-Motion dataset can be downloaded from and . You can also download the pretrained models of all the baselines in . More details could be found in the Project Page.
After download the dataset, please prepare your data like this:
your_project_folder/
├── data/
│ ├── MI-Motion
│ │ ├── S0
│ │ ├── S1
│ │ ├── S2
│ │ ├── S3
│ │ ├── S4
│ ├── ├── ...
│ ├── preprocess_data.py
│ ├── ...
├── baselines/
│ ├── ...
├── util/
│ ├── ...
cd data
python preprocess_data.py
For any baseline method:
python baselines/train_{method}.py
python baselines/train_hri.py # example of training for HRI baseline
For any baseline method:
python baselines/eval_{method}.py
If you want evaluation for ultra-long-term prediction, use:
python baselines/eval_{method}.py --ultra-long 1
python baselines/eval_{method}.py --vis 1 # for short-term and long term prediction
python baselines/eval_{method}.py --vis 1 --ultra-long 1 # for ultra-long-term prediction
The rendered PNGs and GIFs are automatically saved in output folder of each baseline.
Many thanks to the previous works:
If this work is helpful for your research, please consider citing the following BibTeX entry.
@misc{xx,
title={The MI-Motion Dataset and Benchmark for 3D Multi-Person Motion Prediction},
author={Xiaogang Peng and Xiao Zhou and Yikai Luo and Hao Wen and Zizhao Wu},
year={2023},
eprint={xx.xx},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
MIT