Skip to content

xiaogangpeng/SocialTGCN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 

Repository files navigation

The Baseline Codes for the paper "The MI-Motion Dataset and Benchmark for 3D Multi-Person Motion Prediction"

Xiaogang Peng, Xiao Zhou, Yikai Luo, Hao Wen, Zizhao Wu*


News

  • [2022/06/01]: The codes of SocialTGCN and other baselines are released.

Pipeline of SocialTGCN

Getting Started

The MI-Motion dataset can be downloaded from Google Drive and Baidu Disk. You can also download the pretrained models of all the baselines in Google Drive. More details could be found in the Project Page.

Prepare Dataset

After download the dataset, please prepare your data like this:

your_project_folder/
├── data/
│   ├── MI-Motion
│   │   ├── S0
│   │   ├── S1
│   │   ├── S2
│   │   ├── S3
│   │   ├── S4
│   ├── ├── ...
│   ├── preprocess_data.py
│   ├── ...
├── baselines/
│   ├── ...
├── util/
│   ├── ...

Preprocsess Data

cd data
python preprocess_data.py

Training

For any baseline method:

python baselines/train_{method}.py
python baselines/train_hri.py   #  example of training for HRI baseline

Evaluation

For any baseline method:

python baselines/eval_{method}.py

If you want evaluation for ultra-long-term prediction, use:

python baselines/eval_{method}.py --ultra-long 1

Visualization

python baselines/eval_{method}.py --vis 1  # for short-term and long term prediction
python baselines/eval_{method}.py --vis 1 --ultra-long 1 # for ultra-long-term prediction 

The rendered PNGs and GIFs are automatically saved in output folder of each baseline.

Acknowledgement

Many thanks to the previous works:

Bibtex

If this work is helpful for your research, please consider citing the following BibTeX entry.

@misc{xx,
      title={The MI-Motion Dataset and Benchmark for 3D Multi-Person Motion Prediction}, 
      author={Xiaogang Peng and Xiao Zhou and Yikai Luo and Hao Wen and Zizhao Wu},
      year={2023},
      eprint={xx.xx},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

MIT

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages