Skip to content

Commit

Permalink
add evaluation matrix
Browse files Browse the repository at this point in the history
  • Loading branch information
WilliamWu96 authored Dec 15, 2022
1 parent 69a72d3 commit 998aefa
Showing 1 changed file with 144 additions and 0 deletions.
144 changes: 144 additions & 0 deletions Competition/Evaluation_matrix.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,144 @@
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
import torch.optim as optim
import torchvision
from torchvision import transforms
from torch.autograd import Variable
import argparse
import time
import copy

# define fully connected network
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(28*28, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 32)
self.fc4 = nn.Linear(32, 10)

def forward(self, x):
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
x = F.relu(x)
x = self.fc3(x)
x = F.relu(x)
x = self.fc4(x)
output = F.log_softmax(x, dim=1)
return output
################################################################################################
## Note: below is the place you need to add your own attack algorithm
################################################################################################
def random_attack(model, X, y, device):
X_adv = Variable(X.data)

random_noise = torch.FloatTensor(*X_adv.shape).uniform_(-0.1, 0.1).to(device)
X_adv = Variable(X_adv.data + random_noise)

return X_adv

# def adv_attack
################################################################################################
## end of attack method
################################################################################################

def eval_adv_test(model, device, test_loader, adv_attack_method):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
data = data.view(data.size(0),28*28)
adv_data = adv_attack_method(model, data, target, device=device)
output = model(adv_data)
test_loss += F.nll_loss(output, target, size_average=False).item()
pred = output.max(1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
test_accuracy = correct / len(test_loader.dataset)
return test_loss, test_accuracy

def evaluate_all_models(model_file, attack_method, test_loader, device):

model = Net().to(device)
model.load_state_dict(torch.load(model_file))

adv_attack = attack_method
ls, acc = eval_adv_test(model, device, test_loader, adv_attack)

del model
return 1/acc, acc

def main():

################################################################################################
## Note: below is the place you need to load your own attack algorithm and defence model
################################################################################################

# attack algorithms name, add your attack function name at the end of the list
attack_method = [random_attack, ]

# defense model name, add your attack function name at the end of the list
model_file = ["clean_model.pt", "adv_model_1.pt", "adv_model_2.pt"]

################################################################################################
## end of load
################################################################################################

# number of attack algorithms
num_all_attack = len(attack_method)
# number of defense model
num_all_model = len(model_file)

# define the evaluation matrix number
evaluation_matrix = np.zeros((num_all_attack, num_all_model))

# setup training parameters
parser = argparse.ArgumentParser(description='PyTorch MNIST Training')
parser.add_argument('--batch-size', type=int, default=128, metavar='N',
help='input batch size for training (default: 128)')
parser.add_argument('--test-batch-size', type=int, default=128, metavar='N',
help='input batch size for testing (default: 128)')
parser.add_argument('--epochs', type=int, default=10, metavar='N',
help='number of epochs to train')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
help='learning rate')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')

args = parser.parse_args(args=[])

# judge cuda is available or not
use_cuda = not args.no_cuda and torch.cuda.is_available()
#device = torch.device("cuda" if use_cuda else "cpu")
device = torch.device("cpu")

torch.manual_seed(args.seed)
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}

train_set = torchvision.datasets.FashionMNIST(root='data', train=True, download=True, transform=transforms.Compose([transforms.ToTensor()]))
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True)

test_set = torchvision.datasets.FashionMNIST(root='data', train=False, download=True, transform=transforms.Compose([transforms.ToTensor()]))
test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=True)

for i in range(num_all_attack):
for j in range(num_all_model):
attack_score, defence_score = evaluate_all_models(model_file[j], attack_method[i], test_loader, device)
evaluation_matrix[i,j] = attack_score

print("evaluation_matrix: ", evaluation_matrix)
# Higher is better
print("attack_score_mean: ", evaluation_matrix.mean(axis=1))
# Higher is better
print("defence_score_mean: ", 1/evaluation_matrix.mean(axis=0))

main()

0 comments on commit 998aefa

Please sign in to comment.