Please also check our sibling project on event entity extraction for template filling
- python 3.5.6
- spacy==2.0.12
- torch 0.4.1 (for
./model
) - pytorch-pretrained-bert==0.6.2 (for
./model
)
./data/
├── process_train_dev.py # proc script
├── process_test.py # proc script
│
├── processed/ # processed data files
│ ├── train.json
│ ├── dev.json
│ └── test.json
│
└── raw_muc/ # Raw data files from MUC-{3,4}
Run preprocessing for train and dev, use flag -full
to include all the templates.
python process_train_dev.py
Run preprocessing for test,
python process_test.py
To run the eval script:
python eval.py --goldfile <gold file path> --predfile <pred file path>
We use ./data/processed/test.json
for <gold file path>
in the experiments. We also include an example output file (./model/pred.json
) in the model foler:
python eval.py --goldfile ./data/processed/test.json --predfile ./model/pred.json
If you use our eval script, please make sure the <pred file>
is of the same format as pred.json
.
We also include a sample output file in the folder.
If you use materials in this repo helpful, please cite:
@inproceedings{du2020doucment,
title={Document-Level Event Role Filler Extraction Using Multi-Granularity Contextualized Encoding of the Text},
author={Du, Xinya and Cardie, Claire},
booktitle={Association for Computational Linguistics (ACL)},
year={2020}
}