Skip to content

On the Receptive Field Misalignment in CAM-based Visual Explanations

Notifications You must be signed in to change notification settings

xpf/CAM-Adversarial-Marginal-Attack

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 

Repository files navigation

CAM-Adversarial-Marginal-Attack (PyTorch)

On the Receptive Field Misalignment in CAM-based Visual Explanations

Pengfei Xia, Hongjing Niu, Ziqiang Li, and Bin Li, Pattern Recognition Letters, 2021.

Abstract: Visual explanations aim at providing an understanding of the inner behavior of convolutional neural networks. Naturally, it is necessary to explore whether these methods themselves are reasonable and reliable. In this paper, we focus on Class Activation Mapping (CAM), a type of attractive explanations that has been widely applied to model diagnosis and weakly supervised tasks. Our contribution is two-fold. First, we identify an important but neglected issue that affects the reliability of CAM results: there is a misalignment between the effective receptive field and the implicit receptive field, where the former is determined by the model and the input, and the latter is determined by the upsampling function in CAM. Occlusion experiments are designed to empirically testify to its existence. Second, based on this finding, an adversarial marginal attack is proposed to fool the CAM-based method and the CNN model simultaneously. Experimental results demonstrate that the provided saliency map can be completely changed to another shape by only perturbing the area with 1-pixel width.

Attacking

# Attack an image with e set to 2
python attack.py --model_name resnet101 --image ./figures/test.jpg --e 2

Citation

If you find this work useful for your research, please consider citing our paper:

@article{xia2021receptive,
  title={On the Receptive Field Misalignment in CAM-based Visual Explanations},
  author={Xia, Pengfei and Niu, Hongjing and Li, Ziqiang and Li, Bin},
  journal={Pattern Recognition Letters},
  volume={152},
  pages={275--282},
  year={2021},
  publisher={Elsevier}
}

About

On the Receptive Field Misalignment in CAM-based Visual Explanations

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages