Skip to content

Pytorch implementation of CPD net(CVPR2019) for salient object detection.

Notifications You must be signed in to change notification settings

xsxszab/CPD-Pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CPD net for salient object detection

Pytorch implementation of CPD(CVPR 2019), some codes(part of network structure definition) are from repository https://github.com/wuzhe71/CPD ,this project is for practice.

Usage

  • Train
    1. Put corresponding dataset in ./input/
      • training images(RGB, jpg format): ./input/train/raw/
      • training masks(gray, png format): ./input/train/mask/
      • validation images(RGB, jpg format): ./input/test/raw/
      • validation masks(gray, png format): ./input/test/mask/
    2. Run train.py, if you want to change some parameters, see train.py for detail.
  • Inference
    1. Put inference data in ./inference/
      • inference images(RGB, jpg format): ./inference
    2. Run inference.py, output saliency maps will be in ./output directory.

Requirements

Original running environment:

  • Python 3.7.5
  • Pytorch 1.3.1
  • TorchVision 0.2.1
  • pillow 7.0.0

Detailed requirements are listed in requirements.txt.

About

Pytorch implementation of CPD net(CVPR2019) for salient object detection.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages